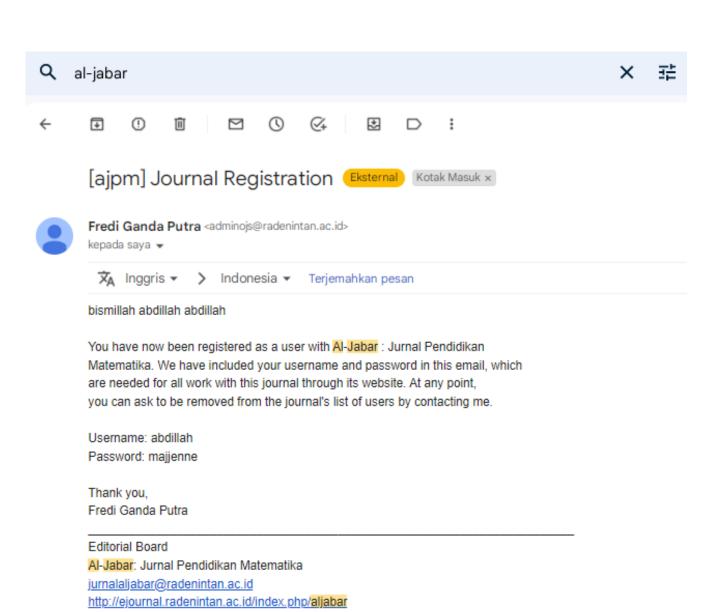
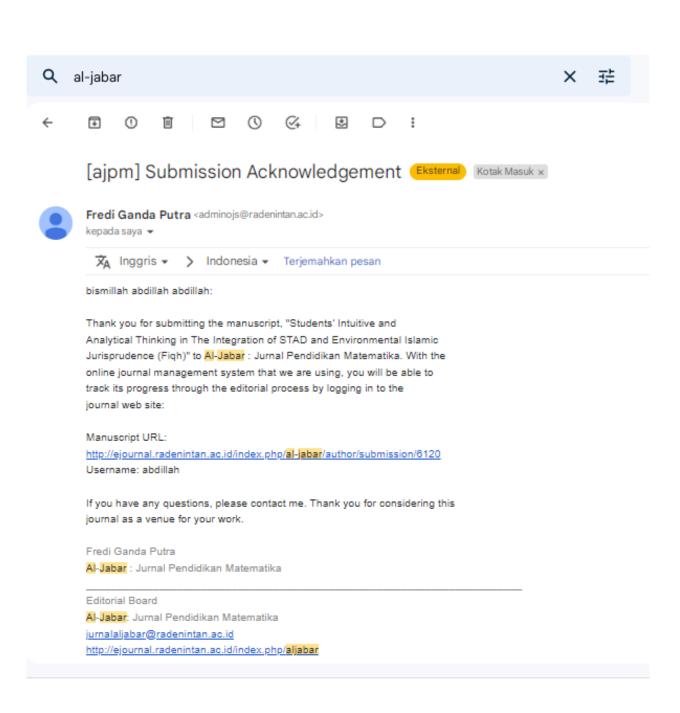
BUKTI KORESPONDENSI

ARTIKEL JURNAL NASIONAL TERAKREDITASI

Judul artikel : Students' Intuitive and Analytical Thinking in the Mathematics Study through the

Integration of STAD and Environmental Islamic Jurisprudence (Fiqh)


Jurnal : Al-Jabar: Jurnal Pendidikan Matematika, 11(1), 49-60


Penulis : Abdillah, Ajeng Gelora Mastuti, Muhammad Rijal, Muhajir Abd. Rahman

No.	Perihal	Tanggal
1	Bukti konfirmasi submit artikel dan artikel yang disubmit	28 Maret 2020
2	Bukti konfirmasi review dan hasil review	10 April 2020
3	Bukti konfirmasi submit revisi, respon kepada reviewer,	16 April 2020
	dan artikel yang diresubmit	
4	Bukti konfirmasi artikel accepted	24 April 2020
5	Bukti konfirmasi artikel published online	24 Juni 2020

1. Bukti konfirmasi submit artikel dan artikel yang disubmit

1a. Bukti konfirmasi submit artikel

1b. Artikel yang disubmit

Students' Intuitive and Analytical Thinking in The Integration of STAD and Environmental Islamic Jurisprudence (Fiqh)

Abdillah¹, Ajeng Gelora Mastuti², Muhammad Rijal³, Muhajir Abd. Rahman⁴

^{1,2}Departement of Mathematics Education, ³Departement of Biology Education, ⁴Departement of Islamic Education Faculty of Teacher Training and Education, IAIN Ambon, Jl. Dr. H. Tarmidzi Taher, Batu Merah Atas, Ambon, Indonesia

Corresponding author:

¹abdillah@iainambon.ac.id ²ajeng.gelora.mastuti@iainambon.ac.id ³rijal_rijal82@yahoo.co.id ⁴muhajir.abd.rahman@iainambon.ac.id

Abstract

Students' intuitive and analytical thinking in geometric problem-solving was explored through the integration of Student Team Achievement Division (STAD) and Environmental Islamic Jurisprudence (Fiqh). Using a concurrent mixed method, this study also aimed to examine students' awareness of environmental issues. The quantitative and qualitative data of the study were collected simultaneously to answer the research problems. Interviews were conducted during the implementation of the learning process and quizzes. A pre-experimental one-shot case study design was employed to gather the quantitative data which were then analyzed descriptively. The results of this study showed that the integration of STAD and environmental Fiqh had a strong correlation with students' environmental awareness (r, 0.936). Each of the statements was responded positively by 90.48% students where 70% respondents exhibited a "strongly agree" or "agree" attitude. More than 76% of the students agreed that a clean and healthy campus environment can be realized with the support of the campus through official regulations. In addition, students' analytical and intuitive thinking to understand tubes and cones can be empowered through the use of a cone-shaped plastic glass as a learning medium.

Keywords: Intuitive, analytical thinking, cooperative STAD, environmental awareness;

INTRODUCTION

The success of a learning process depends on the teacher's mastery of materials, strategies, and media. Teachers need to possess high creativity to maintain their students' interest and motivation in learning. The integration of effective learning models and appropriate media, such as using plastic waste as realia, can be one of the alternatives to improve the quality of learning.

Plastic waste is a major cause of environmental pollution. Around 52.2% irrigation is predominantly polluted by plastic waste (Sulaeman et al., 2018). Plastic waste is carcinogenic to humans. It can lead to birth defects, immune disorders, endocrine disorders, and reproductive disorders (Pavani & Rajeswari, 2014). In dealing with plastic waste problems, the current study attempted to explain the use of plastic waste as a learning medium to help students understand

the concept of three-dimensional shapes with curves. This article also outlines the potential role of university students as the members of an intellectual community who can be involved in plastic waste management. In relation to this, the understanding of plastic waste management needs to be integrated into mathematics learning at the university.

The integration of Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the Environment has been implemented in "School Mathematics Development" courses (Ardiyani et al., 2018; Purwanti & Musadat, 2018). However, the results of these studies failed to clarify how mathematics concepts were acquired by the students at every stage of STAD. Besides, no study has reported university students' intuitive and analytic thinking through STAD and Environmental Fiqh. Therefore, the current study aimed to investigate how university students performed intuitive and analytical thinking through the integration of Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the Environment as well as examine how plastic waste was utilized as a learning medium in the process.

Research has shown the importance of intuitive and analytical thinking in problem-solving (Kurniawati et al., 2014; Nurhanurawati et al., 2018; Okoli & Watt, 2018; Panbanlame et al., 2014). (Kurniawati et al., 2014) argue that intuitive thinking is necessary for students in solving mathematical problems, especially in predicting the correct answers to the problems and exploring the problems by identifying mathematical concepts or formulas involved in them, using various strategies, or giving various examples of statements on certain mathematical concepts. (Nurhanurawati et al., 2018) state that there might be some accuracy issues raised when studying the convergence of sequences in Real Analysis. To reduce the problems, students must be given the opportunity to use their intuitive thinking as a decisive part in acquiring new knowledge. In other words, student intuition is highly required in the first step to solving a problem (Panbanlame et al., 2014). Environmental Fiqh contains a set of rules that manage the distribution of shar'i knowledge or shar'i demands that are associated with ecological problems. These rules are used to critique human destructive and exploitative behaviors that threaten environment sustainability (Syarifudin, 2013).

METHOD

Concurrent mixed methods design was employed in this study. A mixed methods design is a procedure for collecting and analyzing data by bringing together quantitative and qualitative methods in a series of analyses to understand the research problems. In concurrent studies, especially, quantitative and qualitative data are collected simultaneously and combined to answer the research problems (Creswell, 2013). The aim of the current concurrent study was to explore university students' intuitive and analytical thinking through the implementation of the integrated Student Team Achievement Division (STAD) and Environmental Islamic Jurisprudence (Fiqh) learning model. This study also aimed to describe the students' environmental awareness during the implementation of the learning model. The total participants of this study were 124 students. They consisted of four classes of four-semester students from the Department of Mathematics Education of IAIN Ambon and UIN Alauddin Makassar.

The quantitative data of this study were obtained by conducting a pre-experimental study with one-shot case study design without control classes (Sugiyono, 2017). These data were analyzed using a quantitative descriptive analysis. The participants were given a special treatment in the form of learning using the integration of STAD and environmental Figh for a

month. Concurrently, qualitative observations and interviews were conducted to investigate major phenomena occurring during the learning process. The students' intuitive and analytical thinking were explored at every stage of learning using the integration of STAD and environmental Fiqh, meanwhile the quantitative data of the study, in the form of students' environmental awareness, were collected at the fifth phase (evaluation phase) of learning using a questionnaire.

FINDINGS AND DISCUSSION

The findings of this study depict the results of the development and implementation of a learning model, namely Integrated Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the environment. The syntax of the learning model can be seen in Table 1.

Tabel 1. The Syntax of the Integrated STAD and Environmental Figh Learning Model

Phase	Activity
Phase-1 Group Arrangement	The lecturer/researcher helps the students form a study group and assists each of the groups in transitioning efficiently.
Phase-2 Delivery of the learning objectives and motivational speech	The lecturer/researcher delivers the objectives of learning using the Integrated STAD and Environmental Fiqh model, invites the students to go outside the classroom to collect plastic waste, and motivates them to study.
Phase-3 Presentation of information	The lecturer/researcher presents information by using a used plastic glass as realia.
Phase-4 Group work or group study assistance	The lecturer/researcher provides guidance for the study groups to complete their task.
Phase-5 Evaluation or assessment	The lecturer/researcher holds quizzes to evaluate the students' learning outcomes and distributes a questionnaire to examine the students' environmental awareness.
Fase-6 Award grants	The lecturer/researcher gives an award to an individual or a group for their hard work during the learning process.

Phase-1

In phase 1, the students were organized into heterogeneous study groups based on their ability levels. Group arrangement is a part of the STAD learning syntax that particularly aims to develop students' cooperative skills.

Phase-2

In phase-2, the researcher delivered the objectives of learning using the Integrated STAD and Environmental Fiqh learning model. The researcher invited all the students to work together with the lecturer and observer outside the classroom for ten minutes. Each of the students was asked to collect plastic garbage and bring it to the classroom. The most dominant type of plastic waste found by the students around the campus environment was drinking glasses made of plastic. The plastic waste found by each student was collected in a study group that was previously formed in phase 1. The researcher then encouraged the students to learn by using a plastic glass as realia. The researcher also emphasized the concept of tubes and cones and increased the students' environmental awareness through the use of plastic glass as a learning medium.

Phase-3

Data on the students' intuitive and analytical thinking in phase-3 were obtained through direct interactions between the researcher and the students in an investigative activity to understand the concept of tube and cone sections. Information was presented by asking each group to observe a plastic glass that had been collected in the previous phase. A plastic glass was raised in front of the students as an example while asking the students about the name or type of the three-dimensional shape they were holding.

The following figure contains an illustrated model of the three-dimensional shape of a used plastic glass.

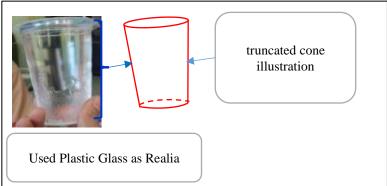


Figure 1. Used Plastic Glass as Realia and Truncated Cone Illustration

The participants from the four classes provided a relatively similar pattern for answering the researcher's question. They spontaneously said that the glass was a tube in shape. The following excerpt shows an example of the students' answer to the question:

- R: Hey Guys, Please pay attention to the plastic glass you and I hold!
- S: Yes, Sir.
- R: What shape is it?
- S: A three-dimensional shape, Sir.
- R: What kind?
- S: It is a tube, Sir (The students spontaneously answered in unison)

Each of the groups was asked to clarify their answers. The result showed that all of the students agreed that the plastic glass was a tube.

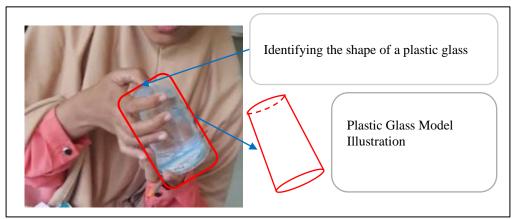


Figure 2. Student Identifying the Shape of a Plastic Glass

The students' spontaneous answer indicated their intuitive thinking. According to (Abdillah, 2017) spontaneous behaviors that are performed based on feelings are a self-evidence characteristic that can be owned without further justification or verification. The conclusion that the plastic glass was a tube was considered true by itself. The truth of the conclusion was accepted based on feelings and therefore required no further justification of verification. This finding is confirmed by (Malewska, 2018) who states that intuitive thinking occurs based on the structure of knowledge formed as a result of various types of learning. This process, according to (Malewska, 2018), takes place when an individual is able to put his/her knowledge or experiences into action.

The result of the analysis conducted to each student showed that every individual used intuitive and analytical thinking to construct their understanding of the three-dimensional model. Their intuitive thinking was signified through their spontaneity in answering the researcher's question about the name of the three-dimensional shape. The students' statement mentioning that the plastic glass was a tube was based on their previous experiences or knowledge that the model resembled a tube. Furthermore, the evidence of the students' analytical thinking was found in the way the students distinguished parts that make up the model, determined how these parts fit or function within the structure, and determined points of view or purposes underlying how these shapes are built.

The following section contains a review of the data and a discussion of the students' response patterns during individual investigations. The investigation began with the researcher asking the student about the name or type of three-dimensional shape of the model held by the researcher. The student could quickly answer that "it is a tube" because s/he has had a previous experience where a similar model was claimed as a tube. According to (Abdillah et al., 2016), using intuitive thinking to solve problems is an alternative to decision making.

Furthermore, the student's analytical thinking was shown in his/her behavior in breaking down and examining each part of the plastic glass model, especially the circular top and bottom part of the glass. The student was able to identify the model's base and circular shaped lid, but got a bit confused because the sizes of the base and lid of the model s/he held were different from those demonstrated by the researcher. In line with this, (Firdaus et al., 2015) point out that analytical thinking involves activities to test, question, connect, and evaluate all aspects of a situation or problem. In addition, (Abdillah et al., 2016) state that an analytical thinking process begins with identifying a problem, then breaking it into parts that are going to

be analyzed and connected to make a decision. Figure 2 shows the activity of a student when identifying a plastic glass.

Figure 2 demonstrates the effort of a student in identifying elements that construct a plastic glass. The student paid careful attention to the base, top part, and curved surface of the model, but looked confused since the area of the base was different from the area of the top part of the model. Her confusion was shown in the following excerpt.

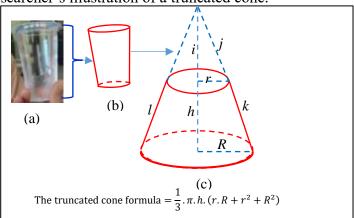
S: What is this shape..., it looks like a tube, but... this is different (while pointing at the base) from this (while pointing at the top part of the model).

Besides mentioning that the model was a tube, the student also stated that the model resembled a cylinder. She got confused because according to her, cylinder was another term for tube. At last, she expressed her uncertainty in the type of the plastic glass used for learning using the Integrated STAD and Environmental Fiqh.

Phase-4

In phase-4, the researcher explained the concept of a plastic-made three-dimensional shape and its relation to the Islamic view of environmental issues. The researcher began with an explanation that plastic waste that had been collected from the campus environment can be used as a learning medium. Then, the researcher described the Islamic perspective on waste issues. The researcher emphasized the fact that plastic waste that is scattered around the classroom floor and campus environment is very uncomfortable to look at. Therefore, it can be utilized as a learning medium. After that, the researcher read surah Ar-Ruum verse 41 in Al-Quran and explained the purpose of the verse and reminded the students that trash or used goods can be used as learning media or teaching aids.

The researcher also revealed the words of Prophet Muhammad Saw. that were associated with environmental issues. These words were narrated by At Tirmidhi and Sa'id bin Musayyab, as follows: "For Allah is good and likes the good, Allah is clean and loves cleanliness, Allah is the Giver and loves giving, Allah is the Most Gracious and loves generosity. Thus, clean your yard and your terrace. Don't imitate the Jews". Furthermore, the researcher emphasized his point by quoting the Indonesian Ulama Council's Fatwa no. 47/2014 on waste management to prevent environmental damage. The Fatwa states that:


- 1. Every Muslim is obliged to maintain the cleanliness of the environment, utilize goods for the benefits of others, and avoid oneself from various diseases as well tabżir and israf deeds.
- 2. Every Muslim is prohibited from littering and/or disposing goods that can still be used for themselves or for others.
- 3. The government and entrepreneurs are obliged to manage waste in order to avoid harm to living things.
- 4. The government and entrepreneurs are obliged to recycle waste into goods that are useful for improving welfare of the people.

The final step of learning in this phase was to provide an explanation on the curved three-dimensional shapes. The researcher helped the students construct their understanding by asking them to pay attention to the parts that make up the plastic glass object. Then, the students were asked to discuss it with their group members and finally communicate the result to the researcher. The construction of geometry concepts with concrete building models is an important part in understanding geometry (Dewi et al., 2018), (Imswatama & Lukman, 2018) (Sutiarso et al., 2017) revealed that the investigation of the properties of geometry and concrete shape is an important part in understanding geometry. The results of their research prove that the teaching media can help students understand concepts in geometry. (Dewi et al., 2018)

found that the use of teaching aids could motivate students in participating in mathematical problem-solving. The application of teaching aids in the classroom can also improve students' mastery of geometrical concepts in mathematics learning. (Imswatama & Lukman, 2018) found that during mathematical problem-solving, students were stimulated to formulate concepts on the definitions, characteristics, and circumference of rectangles by experimenting with tools and objects around them. Moreover, (Imswatama & Lukman, 2018) concluded that this activity was effective in improving the students' mathematical skills and critical thinking. This is in line with one of the activities of the Integrated STAD and Environmental Fiqh where the students were asked to identify parts of the three-dimensional shape. This exploration activity allowed the students to think intuitively, analytically, and critically.

The next step was to help the students understand that the top and base parts of the plastic glass model was circular in different sizes. The model also had a curved side which was a truncated sector in shape instead of a rectangular. Given this information, it can be concluded that the model was actually not a tube, but a truncated cone, a cone with the tip straight cut off. Figure 3 contains the researcher's illustration of a truncated cone.

Figure 3. Truncated Cone Illustration

The researcher drew the plastic glass model (a) as shown in Figure 3 (b) on the board, then rotated the model 180⁰ to obtain Figure 3 (c). Then, the researcher explained to the students that if line k and line l were dragged upward (while demonstrating it), then they would intersect in one point. The researcher's activity is similar to those suggested in (Eriana et al., 2019) and (Sutiarso et al., 2017) who found that using realia could effectively improve students' concept mastery in mathematics learning.

Soon after Figure 3 (c) was completely drawn, the researcher invited the students to rediscover the truncated cone formula. The researcher provided scaffolding and guidance for the students on triangle congruence. Scaffolding is a notion that refers to an assistance provided by an adult or an expert (a teacher in this case) for the younger or the less knowledgeable ones. Scaffolding basically involves adults who control the elements of a task that are beyond students' capacity. Scaffolding allows students to concentrate on completing the elements of a task that are within their competency reach (Wood et al., 1976). Scaffolding given by the researcher could help the students discover the following the truncated cone formula:

The truncated cone formula $=\frac{1}{3}.\pi.h.(r.R+r^2+R^2)$

This finding is corroborated with those of (Inkeeree et al., 2018; Ling et al., 2016). (Ling et al., 2016) revealed that in cooperative learning, students had the ability to compete and work together in groups until their individual enthusiasm and creativity in learning were boosted.

Furthermore, (Ling et al., 2016) states that cooperative learning in Mathematics leads to better outcomes because the students are put in a relaxed learning environment that encourages them to be more advanced in asking questions as a group. Similarly, (Inkeeree et al., 2018) argue that students can work as a team to develop social interaction skills that contribute to better achievement especially in learning mathematics. Scaffolding, according to (Sutiarso et al., 2017), can be provided in various ways, such as cards, handouts, instructions, examples, questions, stories, explanations, and visuals. Scaffolding is one of the teacher's strategies to bridge abstract concepts of geometry into concrete.

Phase-5

In phase 5, the researcher used a quiz to evaluate the students' environmental awareness and the understanding of geometry concepts. Each student was equipped with a plastic bottle, a plastic ruler, a piece of paper containing a mathematical problem, and a questionnaire consisting of 22 question items. The researcher asked the students to solve the problem (Figure 4) individually.

Question

"The net content or the volume of the bottle in front of you is 600 ml. Determine how to find out the volume of the bottle!"

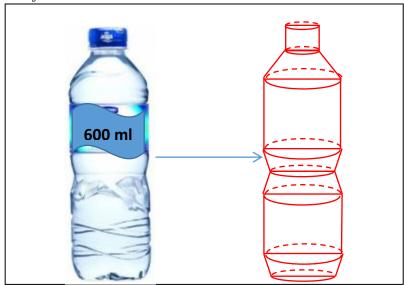


Figure 4. A 600 ml Plastic Bottle

The question aimed to explore the students' intuitive and analytical thinking. When the students were given the question, they started to investigate the bottle and pay attention to parts of the bottle. They figured out that the bottle was made up of tubes and truncated cones. Therefore, the students drew Figure 4 as an illustration to help them answer the question.

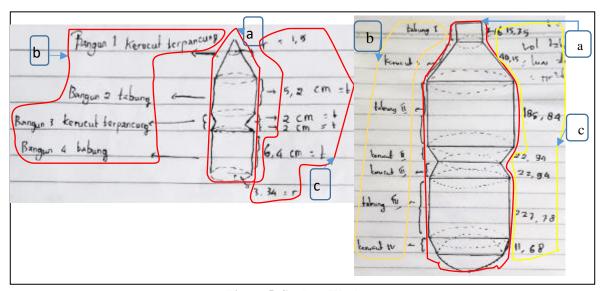


Figure 5. Student Work

An analytical thinking process was demonstrated in Figure 5. Based on the example, it was known that the student (in particular) did the following to determine the formula of the bottle volume. First, the student performed a "differentiating" activity. It was obvious that the student started by distinguishing the types of shapes that make up the bottle (Figure 5 (a) and (b)). Figure 5 (a) represents a bottle with a known volume, while Figure 5 (b) represents the types of shapes that make up the bottle. The second activity that the student did was attributing or assigning names for each shape that makes up the bottle model. As shown in Figure 5 (b), the student labeled each part by mentioning shape 1 as a truncated cone, shape 2 as a tube, shape 3 as a truncated cone, and shape 4 as a tube. Finally, the student's organizing activity was shown in the way the student's arrangement of the shape (shape 1, shape 2, shape 3, and shape 4). After organizing the order, the student measured the length of each part and wrote down their respective sizes.

Activities conducted by the student are in line with those revealed in (Abdillah, 2017; Maharani, 2014). (Maharani, 2014) states that students' analytic thinking is characterized by the ability to describe, determine, and analyze information used to understand knowledge by reasoning and thinking logically, not merely based on feelings or guesses. (Abdillah, 2017) argues that differentiating is marked by students' activity in distinguishing relevant and irrelevant parts of an object. Organizing is characterized by determining how an element fits or functions in a structure. Attributing is marked by how the students determine the point of view, bias, values, or intentions that underlie the material presented as well as identify and construct the problem. Labeling an object is usually based on previous experiences; thus, this activity is categorized into an intuitive thinking behavior (Eames, 2014; Järvilehto, 2015). Therefore, a series of activities conducted by the student may suggest that there is an interaction between the student's intuitive and analytical thinking (Abdillah et al., 2016).

According to (Vale & Barbosa, 2018), the strategy performed by the student in Figure 5 enables him to discover alternative solutions, simplify the process of problem solving, and at the same time connect knowledge with experiences and develop thinking flexibility, which constitutes one of the characteristics of analytic thinking. (Vale & Barbosa, 2018) also states that analytic thinking with visual strategies has the potential enlighten students that blind manipulation of symbols and procedures is not always possible, but necessary and

complementary for more formal and complex understanding. The result of the student's calculation of the bottle volume can be seen in Figure 6 as follows:

Figure 6. Calculation of the Bottle Volume

Figure 6 shows proof that the student found the bottle volume (642.21 ml) by first calculating the volume of each shape making up the bottle. The activity performed by the student is categorized into an analytical thinking behavior (Abdillah, 2017; Maharani, 2014).

After finishing the task, all of the students were asked to fill in a questionnaire on environmental awareness. The result of the survey showed that 90.48% of the students provided positive responses towards the implementation of the Integrated STAD and Environmental Figh in the classroom. Seventy percent of the students had high environmental awareness and 76% of the students agreed that a clean and healthy campus environment can be realized by the existence of official regulations from the campus. Besides, the result of the Pearson Correlation analysis showed that there was a strong and positive correlation between the learning model implementation and the students' environmental awareness (r, 0.936), also suggesting that the Integrated STAD and Environmental Figh could significantly affect the students' environmental awareness (Sig. value (1-tailed) or the probability is 0.000<0.05). This finding corresponds with those by (Ling et al., 2016) who discovered that Student Team Achievement Division (STAD) was effective in encouraging the teacher and the students to be innovative and creative, especially in improving the quality of learning in the classroom. In addition, (Heidari & Heidari, 2015) state that the most appropriate method and the best system for enhancing environmental knowledge in society is to provide materials, activities, and structures that help individuals perceive themselves as responsible for protecting the environment. Furthermore, according to (Heidari & Heidari, 2015), it is crucial for the teacher to acquire knowledge about environmental issues so that s/he can teach it to the students. It is also important for the teacher to constantly remind the students that environmental education can be provided in the long term or medium term as well as inform the students about their role in protecting the environment.

Activities conducted in phase 2, 3, and 4 are in line with findings from (Karataş & Karataş, 2016; Valderrama-Hernández et al., 2017) on environmental education. (Karataş & Karataş, 2016) state that environmental education has a purpose to develop a world population who are aware of, care about the environment and the problems associated with it, and have the knowledge, skills, attitudes, motivations, and commitments to work individually and collectively towards solutions to current problems and new prevention methods. Similarly, (Valderrama-Hernández et al., 2017) argue that to overcome the complexity of environmental problems, it is necessary to involve teachers in the development of environmental education.

Phase-6

In phase-6, an award was granted to the group who could show their best effort in participating. The award given to the exemplary group was in the form of references. This activity is confirmed by the results of the research by (Rahayu et al., 2017; Sari, 2017), stating that appreciation for students will result in improving their motivation in learning because they feel respected when bringing out ideas in their minds. As a result, the students feel that individual efforts and teamwork highly contribute to the success of the group.

CONCLUSION

The results of the current study showed that the students' intuitive thinking started to develop in phase 3, where they were asked to identify the type of the plastic glass they were holding. Phase 4 that allowed the students to separate parts constructing the glass, determine the name of each part, and set a point of view or the purpose underlying the material presented was the phase where the students performed an analytical thinking process. In phase 5, the students were given the opportunity to solve a mathematical problem using analytical thinking. At this stage, the students were able to distinguish the type of each shape constructing a plastic bottle (differentiating), assigning each type with a name (attributing), and labeling the names in order and calculating the length of each part (organizing). These activities were then followed by the interaction between the students' intuitive and analytical thinking that was shown in identifications and labeling of each type of the three-dimensional shapes. Furthermore, the students' analytical thinking was also shown in the process of calculating the bottle volume by first identifying each shape constructing the bottle. In addition, the result of the questionnaire on environmental awareness showed that 90.48% students provided positive responses towards the implementation of the Integrated STAD and Environmental Figh learning model. More than 70% of the students showed a "strongly agree" or "agree" attitude and over 76% students assumed that a clean and healthy campus environment can be realized with the support of the campus through official regulations.

REFERENCES

Abdillah, A. (2017). Berpikir Intuitif dan Analitik Siswa dalam Menyelesaikan Masalah Matematis "Informasi Terbatas". Dissertation. Malang: Universitas Negeri Malang.

Abdillah, A., Nusantara, T., Subanji, S., Susanto, H., & Abadyo, A. (2016). The Students Decision Making in Solving Discount Problem. International Education Studies, 9(7), 57–63. https://doi.org/10.5539/ies.v9n7p57

Ardiyani, S. M., Gunarhadi, G., & Riyadi, R. (2018). Realistic Mathematics Education in Cooperative Learning Viewed From Learning Activity. Journal on Mathematics Education, 9(2), 301–310. https://doi.org/10.22342/jme.9.2.5392.301-310

Creswell, J. W. (2013). Research Design Pendekatan Kualitatif, Kuantitatif, dan Mixed. Pustaka Pelajar.

Dewi, M. L., Hakim, A. R., Setiawan, A., Adhisuwignjo, S., & Rohadi, E. (2018). Mathematics teaching Aids to improve the students abstraction on Geometry in Civil Engineering of State Polytechnic Malang. IOP

Conference Series: Materials Science and Engineering, 434, 1–5. https://doi.org/10.1088/1757-899X/434/1/012004

Eames, C. L. (2014). Investigating Children's Intuitive And Analytical Thinking About Path Length As A Developmental Phenomenon [PhD, Illinois State University]. https://doi.org/10.30707/ETD2014.Eames.C

Eriana, E., Kartono, K., & Sugianto, S. (2019). Understanding Ability of Mathematical Concepts and Students' Self-reliance towards Learning by Implementing Manipulative Props (APM) on Jigsaw Technique. Journal of Primary Education, 8(2), 176–183. https://doi.org/10.15294/jpe.v8i2.25984

Firdaus, F., Kailani, I., Bakar, Md. N. B., & Bakry, B. (2015). Developing Critical Thinking Skills of Students in Mathematics Learning. Journal of Education and Learning (EduLearn), 9(3), 226–236. https://doi.org/10.11591/edulearn.v9i3.1830

Heidari, F., & Heidari, M. (2015). Effectiveness of Management of Environmental Education on Improving Knowledge for Environmental Protection (Case Study: Teachers at Tehran's Elementary School). International Journal of Environmental Research, 9(4), 1225–1232. https://doi.org/10.22059/IJER.2015.1013

Imswatama, A., & Lukman, H. S. (2018). The Effectiveness of Mathematics Teaching Material Based on Ethnomathematics. International Journal of Trends in Mathematics Education Research, 1(1), 35–38. https://doi.org/10.33122/ijtmer.v1i1.11

Inkeeree, H. K., Fauzee, M. S., & Othman, M. K. (2018). The Effects Of Student Achievement Team-Division (STAD) on Achievement and Retention in Mathematics of Thai Students. European Journal of Education Studies, 5(2), 33–47. https://doi.org/10.5281/zenodo.1413658

Järvilehto, L. (2015). The Nature and Function of Intuitive Thought and Decision Making. Springer International Publishing. https://doi.org/10.1007/978-3-319-18176-9

Karataş, A., & Karataş, E. (2016). Environmental education as a solution tool for the prevention of water pollution. Journal of Survey in Fisheries Sciences, 3(1), 61–70. https://doi.org/10.18331/SFS2016.3.1.6

Kurniawati, L., Kusumah, Y. S., Sumarmo, U., & Sabandar, J. (2014). Enhancing Students' Mathematical Intuitive-Reflective Thinking Ability through Problem-Based Learning with Hypnoteaching Method. Journal of Education and Practice, 5(36), 130–135. https://www.iiste.org/Journals/index.php/JEP/article/view/17480/17739

Ling, W. N., Ghazali, M. I. B., & Raman, A. (2016). The effectiveness of student teams-achievement division (STAD) cooperative learning on mathematics achievement among school students in Sarikei District, Sarawak. International Journal of Advanced Research and Development, 1(3), 17–21. https://doi.org/doi.org/10.22271/advanced

Maharani, H. R. (2014). Creative Thinking in Mathematics: Are We Able to Solve Mathematical Problems in a Variety of Way? International Conference on Mathematics, Science, and Education 2014 (ICMSE 2014), Semarang(Mathematics and Natural Science Semarang State University), 120–125. http://research.unissula.ac.id/file/publikasi/211313016/402521.pdf

Malewska, K. (2018). The profile of an intuitive decision maker and the use of intuition in decision-making practice. Management, 22(1), 31–44. https://doi.org/10.2478/manment-2018-0003

Nurhanurawati, Purwanto, As'ari, A. R., & Irawan, E. B. (2018). Tortuous thinking intuitively in solving problem of sequence convergence. Journal of Physics: Conference Series, 1028(2), 1–6. https://doi.org/10.1088/1742-6596/1028/1/012148

Okoli, J., & Watt, J. (2018). Crisis decision-making: The overlap between intuitive and analytical strategies. Management Decision, 56(5), 1122–1134. https://doi.org/10.1108/MD-04-2017-0333

Panbanlame, K., Sangaroon, K., & Inprasitha, M. (2014). Students' Intuition in Mathematics Class Using Lesson Study and Open Approach. Psychology, 05(13), 1503–1516. https://doi.org/10.4236/psych.2014.513161

Pavani, P., & Rajeswari, T. R. (2014). Impact of Plastics on Environmental Pollution. Journal of Chemical and Pharmaceutical Sciences, 3, 87–93.

https://jchps.com/specialissues/Special%20issue3/18%20jchps%20si3%20P.Pavani%2087-93.pdf

Purwanti, D., & Musadat, A. A. (2018). Increasing Students' Achievement on Simple Two-Dimensional Figure Materials Through Students STAD for Third Graders of Elementary School. International Journal of Multicultural and Multireligious Understanding, 5(5), 80–86. https://ijmmu.com/index.php/ijmmu/article/view/315/240

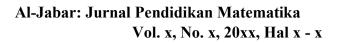
Rahayu, T., Syafril, S., Wati, W., & Yuberti, Y. (2017). The Application of STAD- Cooperative Learning in Developing Integrated Science on Students Worksheet. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 6(2), 247–254. https://doi.org/10.24042/jipfalbiruni.v6i2.1933

Sari, I. F. (2017). Pemberian Reward dan Punishment dengan Kombinasi Model Pembelajaran Kooperatif Tipe STAD untuk Meningkatkan Motivasi dan Hasil Belajar Peserta Didik Kelas X pada Mata Pelajaran Ekonomi di SMA Negeri 1 Mlati. Jurnal Pendidikan dan Ekonomi, 6(1), 1–8.

http://journal.student.uny.ac.id/ojs/ojs/index.php/ekonomi/article/viewFile/6078/5805

Sugiyono, S. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. CV. Alfabeta.

Sulaeman, D., Arif, S., & Sudarmadji. (2018). Trash-polluted irrigation: Characteristics and impact on agriculture. IOP Conference Series: Earth and Environmental Science, 148, 1–12. https://doi.org/10.1088/1755-1315/148/1/012028


Sutiarso, S., Coesamin, C., & Nurhanurawati, N. (2017). The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts. Journal on Mathematics Education, 9(1), 95–102. https://doi.org/10.22342/jme.9.1.4291.95-102

Syarifudin, S. (2013). Pencemaran Lingkungan dalam Perspektif Fiqh. Hukum Islam, XIII(1), 40–63. http://ejournal.uin-suska.ac.id/index.php/hukumislam/article/view/965/906

Valderrama-Hernández, R., Alcántara, L., & Limón, D. (2017). The Complexity of Environmental Education: Teaching Ideas and Strategies from Teachers. Procedia - Social and Behavioral Sciences, 237, 968–974. https://doi.org/10.1016/j.sbspro.2017.02.137

Vale, I., & Barbosa, A. (2018). Mathematical problems: The advantages of visual strategies. Journal of the European Teacher Education Network, 13, 23–33. https://pdfs.semanticscholar.org/d24d/568bb13ed135d041a689eff374c7e1633185.pdf

Wood, D., Bruner, J. S., & Ross, G. (1976). The Role of Tutoring in Problem Solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

2. Bukti konfirmasi review dan hasil review
2a. Bukti konfirmasi review (10 April 2020)

Eksterna

Kotak Masuk

Muhamad Syazali <adminojs@radenintan.ac.id>

Jum, 10 Apr 2020 11.34

kepada saya, ajeng, muhammad, muhajir

Inggris

Indonesia

Terjemahkan pesan

Nonaktifkan untuk: Inggris

Dear: Abdillah

Please fix your article based on the advice of the reviewer and mark the part you are correcting by giving a different color to the paragraph or sentence that you add or correct.

We will wait for your repair until April 20, 2020, thank you.

Editorial Al-Jabar: Jurnal Pendidikan Matematika Managing Editor

Al-Jabar: Jurnal Pendidikan Matematika

Muhamad Syazali

Editorial Board

jurnalaljabar@radenintan.ac.id

http://ejournal.radenintan.ac.id/index.php/aljabar

2b. Hasil Review

REVIEWER B

Students' Intuitive and Analytical Thinking in The Integration of STAD and Environmental Islamic Jurisprudence (Fiqh)

Abstract

Students' intuitive and analytical thinking in geometric problem-solving was explored through the integration of Student Team Achievement Division (STAD) and Environmental Islamic Jurisprudence (Fiqh). Using a concurrent mixed method, this study also aimed to examine students' awareness of environmental issues. The quantitative and qualitative data of the study were collected simultaneously to answer the research problems. Interviews were conducted during the implementation of the learning process and quizzes. A pre-experimental one-shot case study design was employed to gather the quantitative data which were then analyzed descriptively. The results of this study showed that the integration of STAD and environmental Fiqh had a strong correlation with students' environmental awareness (r, 0.936). Each of the statements was responded positively by 90.48% students where 70% respondents exhibited a "strongly agree" or "agree" attitude. More than 76% of the students agreed that a clean and healthy campus environment can be realized with the support of the campus through official regulations. In addition, students' analytical and intuitive thinking to understand tubes and cones can be empowered through the use of a cone-shaped plastic glass as a learning medium.

Keywords: Intuitive, analytical thinking, cooperative STAD, environmental awareness;

INTRODUCTION

The success of a learning process depends on the teacher's mastery of materials, strategies, and media. Teachers need to possess high creativity to maintain their students' interest and motivation in learning. The integration of effective learning models and appropriate media, such as using plastic waste as realia, can be one of the alternatives to improve the quality of learning.

Plastic waste is a major cause of environmental pollution. Around 52.2% irrigation is predominantly polluted by plastic waste (Sulaeman et al., 2018). Plastic waste is carcinogenic to humans. It can lead to birth defects, immune disorders, endocrine disorders, and reproductive disorders (Pavani & Rajeswari, 2014). In dealing with plastic waste problems, the current study attempted to explain the use of plastic waste as a learning medium to help students understand the concept of three-dimensional shapes with curves. This article also outlines the potential role of university students as the members of an intellectual community who can be involved in plastic waste management. In relation to this, the understanding of plastic waste management needs to be integrated into mathematics learning at the university.

The integration of Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the Environment has been implemented in "School Mathematics Development" courses (Ardiyani et al., 2018; Purwanti & Musadat, 2018). However, the results of these studies failed to clarify how mathematics concepts were acquired by the students at

Commented [A1]: Do not write your tilte again in your abstrak. You can changen with another word as introduction.

Commented [A2]: And this you can put after your purpose why do you do this?

every stage of STAD. Besides, no study has reported university students' intuitive and analytic thinking through STAD and Environmental Fiqh. Therefore, the current study aimed to investigate how university students performed intuitive and analytical thinking through the integration of Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the Environment as well as examine how plastic waste was utilized as a learning medium in the process.

Research has shown the importance of intuitive and analytical thinking in problem-solving (Kurniawati et al., 2014; Nurhanurawati et al., 2018; Okoli & Watt, 2018; Panbanlame et al., 2014). (Kurniawati et al., 2014) argue that intuitive thinking is necessary for students in solving mathematical problems, especially in predicting the correct answers to the problems and exploring the problems by identifying mathematical concepts or formulas involved in them, using various strategies, or giving various examples of statements on certain mathematical concepts. (Nurhanurawati et al., 2018) state that there might be some accuracy issues raised when studying the convergence of sequences in Real Analysis. To reduce the problems, students must be given the opportunity to use their intuitive thinking as a decisive part in acquiring new knowledge. In other words, student intuition is highly required in the first step to solving a problem (Panbanlame et al., 2014). Environmental Fiqh contains a set of rules that manage the distribution of shar'i knowledge or shar'i demands that are associated with ecological problems. These rules are used to critique human destructive and exploitative behaviors that threaten environment sustainability (Syarifudin, 2013).

METHOD

Concurrent mixed methods design was employed in this study. A mixed methods design is a procedure for collecting and analyzing data by bringing together quantitative and qualitative methods in a series of analyses to understand the research problems. In concurrent studies, especially, quantitative and qualitative data are collected simultaneously and combined to answer the research problems (Creswell, 2013). The aim of the current concurrent study was to explore university students' intuitive and analytical thinking through the implementation of the integrated Student Team Achievement Division (STAD) and Environmental Islamic Jurisprudence (Fiqh) learning model. This study also aimed to describe the students' environmental awareness during the implementation of the learning model. The total participants of this study were 124 students. They consisted of four classes of four-semester students from the Department of Mathematics Education of IAIN Ambon and UIN Alauddin Makassar.

The quantitative data of this study were obtained by conducting a pre-experimental study with one-shot case study design without control classes (Sugiyono, 2017). These data were analyzed using a quantitative descriptive analysis. The participants were given a special treatment in the form of learning using the integration of STAD and environmental Fiqh for a month. Concurrently, qualitative observations and interviews were conducted to investigate major phenomena occurring during the learning process. The students' intuitive and analytical thinking were explored at every stage of learning using the integration of STAD and environmental Fiqh, meanwhile the quantitative data of the study, in the form of students' environmental awareness, were collected at the fifth phase (evaluation phase) of learning using a questionnaire.

FINDINGS AND DISCUSSION

Commented [A3]: After this. This just opinion about your keyword. But please give reference another research from your keyword. You can show 10 research by 1 keyword. After you give that. You can say your reason why do you take this word.

Commented [A4]: It is good if you give sketsa from STAD, if there is sketsa

The findings of this study depict the results of the development and implementation of a learning model, namely Integrated Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the environment. The syntax of the learning model can be seen in Table 1.

Tabel 1. The Syntax of the Integrated STAD and Environmental Fiqh Learning Model

Phase	Activity
Phase-1 Group Arrangement	The lecturer/researcher helps the students form a study group and assists each of the groups in transitioning efficiently.
Phase-2 Delivery of the learning objectives and motivational speech	The lecturer/researcher delivers the objectives of learning using the Integrated STAD and Environmental Fiqh model, invites the students to go outside the classroom to collect plastic waste, and motivates them to study.
Phase-3 Presentation of information	The lecturer/researcher presents information by using a used plastic glass as realia.
Phase-4 Group work or group study assistance	The lecturer/researcher provides guidance for the study groups to complete their task.
Phase-5 Evaluation or assessment	The lecturer/researcher holds quizzes to evaluate the students' learning outcomes and distributes a questionnaire to examine the students' environmental awareness.
Fase-6 Award grants	The lecturer/researcher gives an award to an individual or a group for their hard work during the learning process.

Phase-1

In phase 1, the students were organized into heterogeneous study groups based on their ability levels. Group arrangement is a part of the STAD learning syntax that particularly aims to develop students' cooperative skills.

Phase-2

In phase-2, the researcher delivered the objectives of learning using the Integrated STAD and Environmental Fiqh learning model. The researcher invited all the students to work together with the lecturer and observer outside the classroom for ten minutes. Each of the students was asked to collect plastic garbage and bring it to the classroom. The most dominant type of plastic waste found by the students around the campus environment was drinking glasses made of plastic. The plastic waste found by each student was collected in a study group that was previously formed in phase 1. The researcher then encouraged the students to learn by using a plastic glass as realia. The researcher also emphasized the concept of tubes and cones and increased the students' environmental awareness through the use of plastic glass as a learning medium.

Phase-3

Data on the students' intuitive and analytical thinking in phase-3 were obtained through direct interactions between the researcher and the students in an investigative activity to understand the concept of tube and cone sections. Information was presented by asking each group to observe a plastic glass that had been collected in the previous phase. A plastic glass was raised in front of the students as an example while asking the students about the name or type of the three-dimensional shape they were holding.

The following figure contains an illustrated model of the three-dimensional shape of a used plastic glass. _____

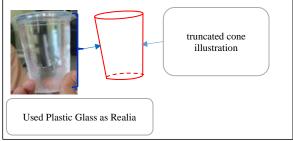


Figure 1. Used Plastic Glass as Realia and Truncated Cone Illustration

The participants from the four classes provided a relatively similar pattern for answering the researcher's question. They spontaneously said that the glass was a tube in shape. The following excerpt shows an example of the students' answer to the question:

- R: Hey Guys, Please pay attention to the plastic glass you and I hold!
- S: Yes, Sir.
- R: What shape is it?
- S: A three-dimensional shape, Sir.
- R: What kind?
- S: It is a tube, Sir (The students spontaneously answered in unison)

Each of the groups was asked to clarify their answers. The result showed that all of the students agreed that the plastic glass was a tube.

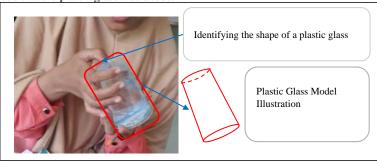


Figure 2. Student Identifying the Shape of a Plastic Glass

The students' spontaneous answer indicated their intuitive thinking. According to (Abdillah, 2017) spontaneous behaviors that are performed based on feelings are a self-

evidence characteristic that can be owned without further justification or verification. The conclusion that the plastic glass was a tube was considered true by itself. The truth of the conclusion was accepted based on feelings and therefore required no further justification of verification. This finding is confirmed by (Malewska, 2018) who states that intuitive thinking occurs based on the structure of knowledge formed as a result of various types of learning. This process, according to (Malewska, 2018), takes place when an individual is able to put his/her knowledge or experiences into action.

The result of the analysis conducted to each student showed that every individual used intuitive and analytical thinking to construct their understanding of the three-dimensional model. Their intuitive thinking was signified through their spontaneity in answering the researcher's question about the name of the three-dimensional shape. The students' statement mentioning that the plastic glass was a tube was based on their previous experiences or knowledge that the model resembled a tube. Furthermore, the evidence of the students' analytical thinking was found in the way the students distinguished parts that make up the model, determined how these parts fit or function within the structure, and determined points of view or purposes underlying how these shapes are built.

The following section contains a review of the data and a discussion of the students' response patterns during individual investigations. The investigation began with the researcher asking the student about the name or type of three-dimensional shape of the model held by the researcher. The student could quickly answer that "it is a tube" because s/he has had a previous experience where a similar model was claimed as a tube. According to (Abdillah et al., 2016), using intuitive thinking to solve problems is an alternative to decision making.

Furthermore, the student's analytical thinking was shown in his/her behavior in breaking down and examining each part of the plastic glass model, especially the circular top and bottom part of the glass. The student was able to identify the model's base and circular shaped lid, but got a bit confused because the sizes of the base and lid of the model s/he held were different from those demonstrated by the researcher. In line with this, (Firdaus et al., 2015) point out that analytical thinking involves activities to test, question, connect, and evaluate all aspects of a situation or problem. In addition, (Abdillah et al., 2016) state that an analytical thinking process begins with identifying a problem, then breaking it into parts that are going to be analyzed and connected to make a decision. Figure 2 shows the activity of a student when identifying a plastic glass.

Figure 2 demonstrates the effort of a student in identifying elements that construct a plastic glass. The student paid careful attention to the base, top part, and curved surface of the model, but looked confused since the area of the base was different from the area of the top part of the model. Her confusion was shown in the following excerpt.

S: What is this shape..., it looks like a tube, but... this is different (while pointing at the base) from this (while pointing at the top part of the model).

Besides mentioning that the model was a tube, the student also stated that the model resembled a cylinder. She got confused because according to her, cylinder was another term for tube. At last, she expressed her uncertainty in the type of the plastic glass used for learning using the Integrated STAD and Environmental Fiqh.

Phase-4

In phase-4, the researcher explained the concept of a plastic-made three-dimensional shape and its relation to the Islamic view of environmental issues. The researcher began with an explanation that plastic waste that had been collected from the campus environment can be

used as a learning medium. Then, the researcher described the Islamic perspective on waste issues. The researcher emphasized the fact that plastic waste that is scattered around the classroom floor and campus environment is very uncomfortable to look at. Therefore, it can be utilized as a learning medium. After that, the researcher read surah Ar-Ruum verse 41 in Al-Quran and explained the purpose of the verse and reminded the students that trash or used goods can be used as learning media or teaching aids.

The researcher also revealed the words of Prophet Muhammad Saw. that were associated with environmental issues. These words were narrated by At Tirmidhi and Sa'id bin Musayyab, as follows: "For Allah is good and likes the good, Allah is clean and loves cleanliness, Allah is the Giver and loves giving, Allah is the Most Gracious and loves generosity. Thus, clean your yard and your terrace. Don't imitate the Jews". Furthermore, the researcher emphasized his point by quoting the Indonesian Ulama Council's Fatwa no. 47/2014 on waste management to prevent environmental damage. The Fatwa states that:

- 1. Every Muslim is obliged to maintain the cleanliness of the environment, utilize goods for the benefits of others, and avoid oneself from various diseases as well tabzir and israf deeds.
- Every Muslim is prohibited from littering and/or disposing goods that can still be used for themselves or for others.
- 3. The government and entrepreneurs are obliged to manage waste in order to avoid harm to living things.
- 4. The government and entrepreneurs are obliged to recycle waste into goods that are useful for improving welfare of the people.

The final step of learning in this phase was to provide an explanation on the curved three-dimensional shapes. The researcher helped the students construct their understanding by asking them to pay attention to the parts that make up the plastic glass object. Then, the students were asked to discuss it with their group members and finally communicate the result to the researcher. The construction of geometry concepts with concrete building models is an important part in understanding geometry (Dewi et al., 2018), (Imswatama & Lukman, 2018) (Sutiarso et al., 2017) revealed that the investigation of the properties of geometry and concrete shape is an important part in understanding geometry. The results of their research prove that the teaching media can help students understand concepts in geometry. (Dewi et al., 2018) found that the use of teaching aids could motivate students in participating in mathematical problem-solving. The application of teaching aids in the classroom can also improve students' mastery of geometrical concepts in mathematics learning. (Imswatama & Lukman, 2018) found that during mathematical problem-solving, students were stimulated to formulate concepts on the definitions, characteristics, and circumference of rectangles by experimenting with tools and objects around them. Moreover, (Imswatama & Lukman, 2018) concluded that this activity was effective in improving the students' mathematical skills and critical thinking. This is in line with one of the activities of the Integrated STAD and Environmental Figh where the students were asked to identify parts of the three-dimensional shape. This exploration activity allowed the students to think intuitively, analytically, and critically.

The next step was to help the students understand that the top and base parts of the plastic glass model was circular in different sizes. The model also had a curved side which was a truncated sector in shape instead of a rectangular. Given this information, it can be concluded that the model was actually not a tube, but a truncated cone, a cone with the tip straight cut off. Figure 3 contains the researcher's illustration of a truncated cone.

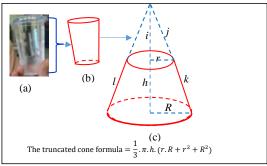


Figure 3. Truncated Cone Illustration

The researcher drew the plastic glass model (a) as shown in Figure 3 (b) on the board, then rotated the model 180° to obtain Figure 3 (c). Then, the researcher explained to the students that if line k and line l were dragged upward (while demonstrating it), then they would intersect in one point. The researcher's activity is similar to those suggested in (Eriana et al., 2019) and (Sutiarso et al., 2017) who found that using realia could effectively improve students' concept mastery in mathematics learning.

Soon after Figure 3 (c) was completely drawn, the researcher invited the students to rediscover the truncated cone formula. The researcher provided scaffolding and guidance for the students on triangle congruence. Scaffolding is a notion that refers to an assistance provided by an adult or an expert (a teacher in this case) for the younger or the less knowledgeable ones. Scaffolding basically involves adults who control the elements of a task that are beyond students' capacity. Scaffolding allows students to concentrate on completing the elements of a task that are within their competency reach (Wood et al., 1976). Scaffolding given by the researcher could help the students discover the following the truncated cone formula: The truncated cone formula $=\frac{1}{3}.\pi.h.(r.R+r^2+R^2)$

This finding is corroborated with those of (Inkeeree et al., 2018; Ling et al., 2016). (Ling et al., 2016) revealed that in cooperative learning, students had the ability to compete and work together in groups until their individual enthusiasm and creativity in learning were boosted. Furthermore, (Ling et al., 2016) states that cooperative learning in Mathematics leads to better outcomes because the students are put in a relaxed learning environment that encourages them to be more advanced in asking questions as a group. Similarly, (Inkeeree et al., 2018) argue that students can work as a team to develop social interaction skills that contribute to better achievement especially in learning mathematics. Scaffolding, according to (Sutiarso et al., 2017), can be provided in various ways, such as cards, handouts, instructions, examples, questions, stories, explanations, and visuals. Scaffolding is one of the teacher's strategies to bridge abstract concepts of geometry into concrete.

Phase-5

In phase 5, the researcher used a quiz to evaluate the students' environmental awareness and the understanding of geometry concepts. Each student was equipped with a plastic bottle, a plastic ruler, a piece of paper containing a mathematical problem, and a questionnaire consisting of 22 question items. The researcher asked the students to solve the problem (Figure 4) individually.

Question

"The net content or the volume of the bottle in front of you is 600 ml. Determine how to find out the volume of the bottle!"



Figure 4. A 600 ml Plastic Bottle

The question aimed to explore the students' intuitive and analytical thinking. When the students were given the question, they started to investigate the bottle and pay attention to parts of the bottle. They figured out that the bottle was made up of tubes and truncated cones. Therefore, the students drew Figure 4 as an illustration to help them answer the question.

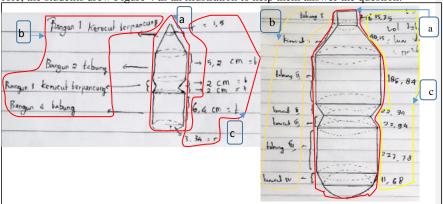


Figure 5. Student Work

An analytical thinking process was demonstrated in Figure 5. Based on the example, it was known that the student (in particular) did the following to determine the formula of the bottle volume. First, the student performed a "differentiating" activity. It was obvious that the student started by distinguishing the types of shapes that make up the bottle (Figure 5 (a) and (b)). Figure 5 (a) represents a bottle with a known volume, while Figure 5 (b) represents the types of shapes that make up the bottle. The second activity that the student did was attributing or assigning names for each shape that makes up the bottle model. As shown in Figure 5 (b), the student labeled each part by mentioning shape 1 as a truncated cone, shape 2 as a tube, shape

3 as a truncated cone, and shape 4 as a tube. Finally, the student's organizing activity was shown in the way the student's arrangement of the shape (shape 1, shape 2, shape 3, and shape 4). After organizing the order, the student measured the length of each part and wrote down their respective sizes.

Activities conducted by the student are in line with those revealed in (Abdillah, 2017; Maharani, 2014). (Maharani, 2014) states that students' analytic thinking is characterized by the ability to describe, determine, and analyze information used to understand knowledge by reasoning and thinking logically, not merely based on feelings or guesses. (Abdillah, 2017) argues that differentiating is marked by students' activity in distinguishing relevant and irrelevant parts of an object. Organizing is characterized by determining how an element fits or functions in a structure. Attributing is marked by how the students determine the point of view, bias, values, or intentions that underlie the material presented as well as identify and construct the problem. Labeling an object is usually based on previous experiences; thus, this activity is categorized into an intuitive thinking behavior (Eames, 2014; Järvilehto, 2015). Therefore, a series of activities conducted by the student may suggest that there is an interaction between the student's intuitive and analytical thinking (Abdillah et al., 2016).

According to (Vale & Barbosa, 2018), the strategy performed by the student in Figure 5 enables him to discover alternative solutions, simplify the process of problem solving, and at the same time connect knowledge with experiences and develop thinking flexibility, which constitutes one of the characteristics of analytic thinking. (Vale & Barbosa, 2018) also states that analytic thinking with visual strategies has the potential enlighten students that blind manipulation of symbols and procedures is not always possible, but necessary and complementary for more formal and complex understanding. The result of the student's calculation of the bottle volume can be seen in Figure 6 as follows:

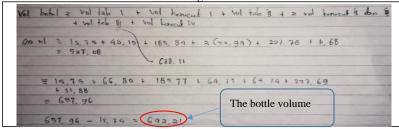


Figure 6. Calculation of the Bottle Volume

Figure 6 shows proof that the student found the bottle volume (642.21 ml) by first calculating the volume of each shape making up the bottle. The activity performed by the student is categorized into an analytical thinking behavior (Abdillah, 2017; Maharani, 2014).

After finishing the task, all of the students were asked to fill in a questionnaire on environmental awareness. The result of the survey showed that 90.48% of the students provided positive responses towards the implementation of the Integrated STAD and Environmental Fiqh in the classroom. Seventy percent of the students had high environmental awareness and 76% of the students agreed that a clean and healthy campus environment can be realized by the existence of official regulations from the campus. Besides, the result of the Pearson Correlation analysis showed that there was a strong and positive correlation between the learning model implementation and the students' environmental awareness (r, 0.936), also suggesting that the Integrated STAD and Environmental Fiqh could significantly affect the students'

environmental awareness (Sig. value (1-tailed) or the probability is 0.000<0.05). This finding corresponds with those by (Ling et al., 2016) who discovered that Student Team Achievement Division (STAD) was effective in encouraging the teacher and the students to be innovative and creative, especially in improving the quality of learning in the classroom. In addition, (Heidari & Heidari, 2015) state that the most appropriate method and the best system for enhancing environmental knowledge in society is to provide materials, activities, and structures that help individuals perceive themselves as responsible for protecting the environment. Furthermore, according to (Heidari & Heidari, 2015), it is crucial for the teacher to acquire knowledge about environmental issues so that s/he can teach it to the students. It is also important for the teacher to constantly remind the students that environmental education can be provided in the long term or medium term as well as inform the students about their role in protecting the environment.

Activities conducted in phase 2, 3, and 4 are in line with findings from (Karataş & Karataş, 2016; Valderrama-Hernández et al., 2017) on environmental education. (Karataş & Karataş, 2016) state that environmental education has a purpose to develop a world population who are aware of, care about the environment and the problems associated with it, and have the knowledge, skills, attitudes, motivations, and commitments to work individually and collectively towards solutions to current problems and new prevention methods. Similarly, (Valderrama-Hernández et al., 2017) argue that to overcome the complexity of environmental problems, it is necessary to involve teachers in the development of environmental education.

Phase-6

In phase-6, an award was granted to the group who could show their best effort in participating. The award given to the exemplary group was in the form of references. This activity is confirmed by the results of the research by (Rahayu et al., 2017; Sari, 2017), stating that appreciation for students will result in improving their motivation in learning because they feel respected when bringing out ideas in their minds. As a result, the students feel that individual efforts and teamwork highly contribute to the success of the group.

CONCLUSION

The results of the current study showed that the students' intuitive thinking started to develop in phase 3, where they were asked to identify the type of the plastic glass they were holding. Phase 4 that allowed the students to separate parts constructing the glass, determine the name of each part, and set a point of view or the purpose underlying the material presented was the phase where the students performed an analytical thinking process. In phase 5, the students were given the opportunity to solve a mathematical problem using analytical thinking. At this stage, the students were able to distinguish the type of each shape constructing a plastic bottle (differentiating), assigning each type with a name (attributing), and labeling the names in order and calculating the length of each part (organizing). These activities were then followed by the interaction between the students' intuitive and analytical thinking that was shown in identifications and labeling of each type of the three-dimensional shapes. Furthermore, the students' analytical thinking was also shown in the process of calculating the bottle volume by first identifying each shape constructing the bottle. In addition, the result of the questionnaire on environmental awareness showed that 90.48% students provided positive responses towards the implementation of the Integrated STAD and Environmental Figh learning model. More than

Commented [A5]:

70% of the students showed a "strongly agree" or "agree" attitude and over 76% students assumed that a clean and healthy campus environment can be realized with the support of the campus through official regulations.

REFERENCES

Abdillah, A. (2017). Berpikir Intuitif dan Analitik Siswa dalam Menyelesaikan Masalah Matematis "Informasi Terbatas". Dissertation. Malang: Universitas Negeri Malang.

Abdillah, A., Nusantara, T., Subanji, S., Susanto, H., & Abadyo, A. (2016). The Students Decision Making in Solving Discount Problem. International Education Studies, 9(7), 57–63. https://doi.org/10.5539/ies.v9n7p57

Ardiyani, S. M., Gunarhadi, G., & Riyadi, R. (2018). Realistic Mathematics Education in Cooperative Learning Viewed From Learning Activity. Journal on Mathematics Education, 9(2), 301–310. https://doi.org/10.22342/jme.9.2.5392.301-310

Creswell, J. W. (2013). Research Design Pendekatan Kualitatif, Kuantitatif, dan Mixed. Pustaka Pelajar.

Dewi, M. L., Hakim, A. R., Setiawan, A., Adhisuwignjo, S., & Rohadi, E. (2018). Mathematics teaching Aids to improve the students abstraction on Geometry in Civil Engineering of State Polytechnic Malang. IOP Conference Series: Materials Science and Engineering, 434, 1–5. https://doi.org/10.1088/1757-899X/434/1/012004

Eames, C. L. (2014). Investigating Children's Intuitive And Analytical Thinking About Path Length As A Developmental Phenomenon [PhD, Illinois State University]. https://doi.org/10.30707/ETD2014.Eames.C

Eriana, E., Kartono, K., & Sugianto, S. (2019). Understanding Ability of Mathematical Concepts and Students' Self-reliance towards Learning by Implementing Manipulative Props (APM) on Jigsaw Technique. Journal of Primary Education, 8(2), 176–183. https://doi.org/10.15294/jpe.v8i2.25984

Firdaus, F., Kailani, I., Bakar, Md. N. B., & Bakry, B. (2015). Developing Critical Thinking Skills of Students in Mathematics Learning. Journal of Education and Learning (EduLearn), 9(3), 226–236. https://doi.org/10.11591/edulearn.v9i3.1830

Heidari, F., & Heidari, M. (2015). Effectiveness of Management of Environmental Education on Improving Knowledge for Environmental Protection (Case Study: Teachers at Tehran's Elementary School). International Journal of Environmental Research, 9(4), 1225–1232. https://doi.org/10.22059/IJER.2015.1013

Imswatama, A., & Lukman, H. S. (2018). The Effectiveness of Mathematics Teaching Material Based on Ethnomathematics. International Journal of Trends in Mathematics Education Research, 1(1), 35–38. https://doi.org/10.33122/ijtmer.v1i1.11

Inkeeree, H. K., Fauzee, M. S., & Othman, M. K. (2018). The Effects Of Student Achievement Team-Division (STAD) on Achievement and Retention in Mathematics of Thai Students. European Journal of Education Studies, 5(2), 33–47. https://doi.org/10.5281/zenodo.1413658

Järvilehto, L. (2015). The Nature and Function of Intuitive Thought and Decision Making. Springer International Publishing. https://doi.org/10.1007/978-3-319-18176-9

Karataş, A., & Karataş, E. (2016). Environmental education as a solution tool for the prevention of water pollution. Journal of Survey in Fisheries Sciences, 3(1), 61–70. https://doi.org/10.18331/SFS2016.3.1.6

Kurniawati, L., Kusumah, Y. S., Sumarmo, U., & Sabandar, J. (2014). Enhancing Students' Mathematical Intuitive-Reflective Thinking Ability through Problem-Based Learning with Hypnoteaching Method. Journal of Education and Practice, 5(36), 130–135. https://www.iiste.org/Journals/index.php/JEP/article/view/17480/17739

Ling, W. N., Ghazali, M. I. B., & Raman, A. (2016). The effectiveness of student teams-achievement division (STAD) cooperative learning on mathematics achievement among school students in Sarikei District, Sarawak. International Journal of Advanced Research and Development, 1(3), 17–21. https://doi.org/doi.org/10.22271/advanced

Maharani, H. R. (2014). Creative Thinking in Mathematics: Are We Able to Solve Mathematical Problems in a Variety of Way? International Conference on Mathematics, Science, and Education 2014 (ICMSE 2014), Semarang(Mathematics and Natural Science Semarang State University), 120–125. http://research.unissula.ac.id/file/publikasi/211313016/402521.pdf

Malewska, K. (2018). The profile of an intuitive decision maker and the use of intuition in decision-making practice. Management, 22(1), 31–44. https://doi.org/10.2478/manment-2018-0003

Nurhanurawati, Purwanto, As'ari, A. R., & Irawan, E. B. (2018). Tortuous thinking intuitively in solving problem of sequence convergence. Journal of Physics: Conference Series, 1028(2), 1–6. https://doi.org/10.1088/1742-6596/1028/1/012148

Okoli, J., & Watt, J. (2018). Crisis decision-making: The overlap between intuitive and analytical strategies. Management Decision, 56(5), 1122–1134. https://doi.org/10.1108/MD-04-2017-0333

Panbanlame, K., Sangaroon, K., & Inprasitha, M. (2014). Students' Intuition in Mathematics Class Using Lesson Study and Open Approach. Psychology, 05(13), 1503–1516. https://doi.org/10.4236/psych.2014.513161

Pavani, P., & Rajeswari, T. R. (2014). Impact of Plastics on Environmental Pollution. Journal of Chemical and Pharmaceutical Sciences. 3, 87–93.

 $\underline{https://jchps.com/specialissues/Special\%20 issue3/18\%20 jchps\%20 si3\%20 P.Pavani\%2087-93.pdf}$

Purwanti, D., & Musadat, A. A. (2018). Increasing Students' Achievement on Simple Two-Dimensional Figure Materials Through Students STAD for Third Graders of Elementary School. International Journal of Multicultural and Multireligious Understanding, 5(5), 80–86. https://ijmmu.com/index.php/ijmmu/article/view/315/240

Rahayu, T., Syafril, S., Wati, W., & Yuberti, Y. (2017). The Application of STAD- Cooperative Learning in Developing Integrated Science on Students Worksheet. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 6(2), 247–254. https://doi.org/10.24042/jipfalbiruni.v6i2.1933

Sari, I. F. (2017). Pemberian Reward dan Punishment dengan Kombinasi Model Pembelajaran Kooperatif Tipe STAD untuk Meningkatkan Motivasi dan Hasil Belajar Peserta Didik Kelas X pada Mata Pelajaran Ekonomi di SMA Negeri 1 Mlati. Jurnal Pendidikan dan Ekonomi, 6(1), 1–8.

 $\underline{http://journal.student.uny.ac.id/ojs/ojs/index.php/ekonomi/article/viewFile/6078/5805}$

Sugiyono, S. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. CV. Alfabeta.

Sulaeman, D., Arif, S., & Sudarmadji. (2018). Trash-polluted irrigation: Characteristics and impact on agriculture. IOP Conference Series: Earth and Environmental Science, 148, 1–12. https://doi.org/10.1088/1755-1315/148/1/012028

Sutiarso, S., Coesamin, C., & Nurhanurawati, N. (2017). The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts. Journal on Mathematics Education, 9(1), 95–102. https://doi.org/10.22342/jme.9.1.4291.95-102

Syarifudin, S. (2013). Pencemaran Lingkungan dalam Perspektif Fiqh. Hukum Islam, XIII(1), 40–63. http://ejournal.uin-suska.ac.id/index.php/hukumislam/article/view/965/906

Valderrama-Hernández, R., Alcántara, L., & Limón, D. (2017). The Complexity of Environmental Education: Teaching Ideas and Strategies from Teachers. Procedia - Social and Behavioral Sciences, 237, 968–974. https://doi.org/10.1016/j.sbspro.2017.02.137

Vale, I., & Barbosa, A. (2018). Mathematical problems: The advantages of visual strategies. Journal of the European Teacher Education Network, 13, 23–33.

 $\underline{https://pdfs.semanticscholar.org/d24d/568bb13ed135d041a689eff374c7e1633185.pdf}$

Wood, D., Bruner, J. S., & Ross, G. (1976). The Role of Tutoring in Problem Solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

REVIEWER A

Students' Intuitive and Analytical Thinking in The Integration of STAD and Environmental Islamic Jurisprudence (Fiqh)

Abstract

Students' intuitive and analytical thinking in geometric problem-solving was explored through the integration of Student Team Achievement Division (STAD) and Environmental Islamic Jurisprudence (Fiqh). Using a concurrent mixed method, this study also aimed to examine students' awareness of environmental issues. The quantitative and qualitative data of the study were collected simultaneously to answer the research problems. Interviews were conducted during the implementation of the learning process and quizzes. A pre-experimental one-shot case study design was employed to gather the quantitative data which were then analyzed descriptively. The results of this study showed that the integration of STAD and environmental Fiqh had a strong correlation with students' environmental awareness (r, 0.936). Each of the statements was responded positively by 90.48% students where 70% respondents exhibited a "strongly agree" or "agree" attitude. More than 76% of the students agreed that a clean and healthy campus environment can be realized with the support of the campus through official regulations. In addition, students' analytical and intuitive thinking to understand tubes and cones can be empowered through the use of a cone-shaped plastic glass as a learning medium.

Keywords: Intuitive, analytical thinking, cooperative STAD, environmental awareness;

INTRODUCTION

The success of a learning process depends on the teacher's mastery of materials, strategies, and media. Teachers need to possess high creativity to maintain their students' interest and motivation in learning. The integration of effective learning models and appropriate media, such as using plastic waste as realia, can be one of the alternatives to improve the quality of learning.

Plastic waste is a major cause of environmental pollution. Around 52.2% irrigation is predominantly polluted by plastic waste (Sulaeman et al., 2018). Plastic waste is carcinogenic to humans. It can lead to birth defects, immune disorders, endocrine disorders, and reproductive disorders (Pavani & Rajeswari, 2014). In dealing with plastic waste problems, the current study attempted to explain the use of plastic waste as a learning medium to help students understand the concept of three-dimensional shapes with curves. This article also outlines the potential role of university students as the members of an intellectual community who can be involved in plastic waste management. In relation to this, the understanding of plastic waste management needs to be integrated into mathematics learning at the university.

The integration of Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the Environment has been implemented in "School Mathematics Development" courses (Ardiyani et al., 2018; Purwanti & Musadat, 2018). However, the results of these studies failed to clarify how mathematics concepts were acquired by the students at

Commented [A6]: notice how to write well

Commented [A7]: you should write this sentence after your goal.

Commented [A8]: Don't put on the result in the abstract, is sufficient put on the conclusion from this research.

Commented [A9]: Use refrences management!

every stage of STAD. Besides, no study has reported university students' intuitive and analytic thinking through STAD and Environmental Fiqh. Therefore, the current study aimed to investigate how university students performed intuitive and analytical thinking through the integration of Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the Environment as well as examine how plastic waste was utilized as a learning medium in the process.

Research has shown the importance of intuitive and analytical thinking in problem-solving (Kurniawati et al., 2014; Nurhanurawati et al., 2018; Okoli & Watt, 2018; Panbanlame et al., 2014). (Kurniawati et al., 2014) argue that intuitive thinking is necessary for students in solving mathematical problems, especially in predicting the correct answers to the problems and exploring the problems by identifying mathematical concepts or formulas involved in them, using various strategies, or giving various examples of statements on certain mathematical concepts. (Nurhanurawati et al., 2018) state that there might be some accuracy issues raised when studying the convergence of sequences in Real Analysis. To reduce the problems, students must be given the opportunity to use their intuitive thinking as a decisive part in acquiring new knowledge. In other words, student intuition is highly required in the first step to solving a problem (Panbanlame et al., 2014). Environmental Fiqh contains a set of rules that manage the distribution of shar'i knowledge or shar'i demands that are associated with ecological problems. These rules are used to critique human destructive and exploitative behaviors that threaten environment sustainability (Syarifudin, 2013).

METHOD

Concurrent mixed methods design was employed in this study. A mixed methods design is a procedure for collecting and analyzing data by bringing together quantitative and qualitative methods in a series of analyses to understand the research problems. In concurrent studies, especially, quantitative and qualitative data are collected simultaneously and combined to answer the research problems (Creswell, 2013). The aim of the current concurrent study was to explore university students' intuitive and analytical thinking through the implementation of the integrated Student Team Achievement Division (STAD) and Environmental Islamic Jurisprudence (Fiqh) learning model. This study also aimed to describe the students' environmental awareness during the implementation of the learning model. The total participants of this study were 124 students. They consisted of four classes of four-semester students from the Department of Mathematics Education of IAIN Ambon and UIN Alauddin Makassar.

The quantitative data of this study were obtained by conducting a pre-experimental study with one-shot case study design without control classes (Sugiyono, 2017). These data were analyzed using a quantitative descriptive analysis. The participants were given a special treatment in the form of learning using the integration of STAD and environmental Fiqh for a month. Concurrently, qualitative observations and interviews were conducted to investigate major phenomena occurring during the learning process. The students' intuitive and analytical thinking were explored at every stage of learning using the integration of STAD and environmental Fiqh, meanwhile the quantitative data of the study, in the form of students' environmental awareness, were collected at the fifth phase (evaluation phase) of learning using a questionnaire.

FINDINGS AND DISCUSSION

Commented [A10]: Use refrences management!

Commented [A11]: Explain again the purpose of your research at the end of the paragraph.

Commented [A12]: Use refrences management!

The findings of this study depict the results of the development and implementation of a learning model, namely Integrated Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the environment. The syntax of the learning model can be seen in Table 1.

Tabel 1. The Syntax of the Integrated STAD and Environmental Fiqh Learning Model

Phase	Activity
Phase-1 Group Arrangement	The lecturer/researcher helps the students form a study group and assists each of the groups in transitioning efficiently.
Phase-2 Delivery of the learning objectives and motivational speech	The lecturer/researcher delivers the objectives of learning using the Integrated STAD and Environmental Fiqh model, invites the students to go outside the classroom to collect plastic waste, and motivates them to study.
Phase-3 Presentation of information	The lecturer/researcher presents information by using a used plastic glass as realia.
Phase-4 Group work or group study assistance	The lecturer/researcher provides guidance for the study groups to complete their task.
Phase-5 Evaluation or assessment	The lecturer/researcher holds quizzes to evaluate the students' learning outcomes and distributes a questionnaire to examine the students' environmental awareness.
Fase-6 Award grants	The lecturer/researcher gives an award to an individual or a group for their hard work during the learning process.

Phase-1

In phase 1, the students were organized into heterogeneous study groups based on their ability levels. Group arrangement is a part of the STAD learning syntax that particularly aims to develop students' cooperative skills.

Phase-2

In phase-2, the researcher delivered the objectives of learning using the Integrated STAD and Environmental Fiqh learning model. The researcher invited all the students to work together with the lecturer and observer outside the classroom for ten minutes. Each of the students was asked to collect plastic garbage and bring it to the classroom. The most dominant type of plastic waste found by the students around the campus environment was drinking glasses

assault Amerikan Meteoretika P-ISSN 2086-5872 -ISSN 2540-7562

Al-Jabar: Jurnal Pendidikan Matematika Vol. x, No. x, 20xx, Hal x - x

made of plastic. The plastic waste found by each student was collected in a study group that was previously formed in phase 1. The researcher then encouraged the students to learn by using a plastic glass as realia. The researcher also emphasized the concept of tubes and cones and increased the students' environmental awareness through the use of plastic glass as a learning medium.

Phase-3

Data on the students' intuitive and analytical thinking in phase-3 were obtained through direct interactions between the researcher and the students in an investigative activity to understand the concept of tube and cone sections. Information was presented by asking each group to observe a plastic glass that had been collected in the previous phase. A plastic glass was raised in front of the students as an example while asking the students about the name or type of the three-dimensional shape they were holding.

The following figure contains an illustrated model of the three-dimensional shape of a used plastic glass.

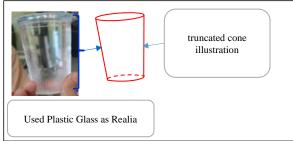


Figure 1. Used Plastic Glass as Realia and Truncated Cone Illustration

The participants from the four classes provided a relatively similar pattern for answering the researcher's question. They spontaneously said that the glass was a tube in shape. The following excerpt shows an example of the students' answer to the question:

- R: Hey Guys, Please pay attention to the plastic glass you and I hold!
- S: Yes, Sir.
- R: What shape is it?
- S: A three-dimensional shape, Sir.
- R: What kind?
- S: It is a tube, Sir (The students spontaneously answered in unison)

Each of the groups was asked to clarify their answers. The result showed that all of the students agreed that the plastic glass was a tube.

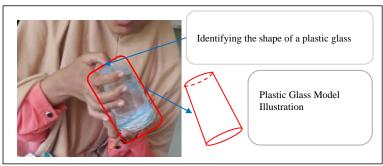


Figure 2. Student Identifying the Shape of a Plastic Glass

The students' spontaneous answer indicated their intuitive thinking. According to (Abdillah, 2017) spontaneous behaviors that are performed based on feelings are a self-evidence characteristic that can be owned without further justification or verification. The conclusion that the plastic glass was a tube was considered true by itself. The truth of the conclusion was accepted based on feelings and therefore required no further justification of verification. This finding is confirmed by (Malewska, 2018) who states that intuitive thinking occurs based on the structure of knowledge formed as a result of various types of learning. This process, according to (Malewska, 2018), takes place when an individual is able to put his/her knowledge or experiences into action.

The result of the analysis conducted to each student showed that every individual used intuitive and analytical thinking to construct their understanding of the three-dimensional model. Their intuitive thinking was signified through their spontaneity in answering the researcher's question about the name of the three-dimensional shape. The students' statement mentioning that the plastic glass was a tube was based on their previous experiences or knowledge that the model resembled a tube. Furthermore, the evidence of the students' analytical thinking was found in the way the students distinguished parts that make up the model, determined how these parts fit or function within the structure, and determined points of view or purposes underlying how these shapes are built.

The following section contains a review of the data and a discussion of the students' response patterns during individual investigations. The investigation began with the researcher asking the student about the name or type of three-dimensional shape of the model held by the researcher. The student could quickly answer that "it is a tube" because s/he has had a previous experience where a similar model was claimed as a tube. According to (Abdillah et al., 2016), using intuitive thinking to solve problems is an alternative to decision making.

Furthermore, the student's analytical thinking was shown in his/her behavior in breaking down and examining each part of the plastic glass model, especially the circular top and bottom part of the glass. The student was able to identify the model's base and circular shaped lid, but got a bit confused because the sizes of the base and lid of the model s/he held were different from those demonstrated by the researcher. In line with this, (Firdaus et al., 2015) point out that analytical thinking involves activities to test, question, connect, and evaluate all aspects of a situation or problem. In addition, (Abdillah et al., 2016) state that an analytical thinking process begins with identifying a problem, then breaking it into parts that are going to

Commented [A13]: Use refrences management!

be analyzed and connected to make a decision. Figure 2 shows the activity of a student when identifying a plastic glass.

Figure 2 demonstrates the effort of a student in identifying elements that construct a plastic glass. The student paid careful attention to the base, top part, and curved surface of the model, but looked confused since the area of the base was different from the area of the top part of the model. Her confusion was shown in the following excerpt.

S: What is this shape..., it looks like a tube, but... this is different (while pointing at the base) from this (while pointing at the top part of the model).

Besides mentioning that the model was a tube, the student also stated that the model resembled a cylinder. She got confused because according to her, cylinder was another term for tube. At last, she expressed her uncertainty in the type of the plastic glass used for learning using the Integrated STAD and Environmental Fiqh.

Phase-4

In phase-4, the researcher explained the concept of a plastic-made three-dimensional shape and its relation to the Islamic view of environmental issues. The researcher began with an explanation that plastic waste that had been collected from the campus environment can be used as a learning medium. Then, the researcher described the Islamic perspective on waste issues. The researcher emphasized the fact that plastic waste that is scattered around the classroom floor and campus environment is very uncomfortable to look at. Therefore, it can be utilized as a learning medium. After that, the researcher read surah Ar-Ruum verse 41 in Al-Quran and explained the purpose of the verse and reminded the students that trash or used goods can be used as learning media or teaching aids.

The researcher also revealed the words of Prophet Muhammad Saw. that were associated with environmental issues. These words were narrated by At Tirmidhi and Sa'id bin Musayyab, as follows: "For Allah is good and likes the good, Allah is clean and loves cleanliness, Allah is the Giver and loves giving, Allah is the Most Gracious and loves generosity. Thus, clean your yard and your terrace. Don't imitate the Jews". Furthermore, the researcher emphasized his point by quoting the Indonesian Ulama Council's Fatwa no. 47/2014 on waste management to prevent environmental damage. The Fatwa states that:

- 1. Every Muslim is obliged to maintain the cleanliness of the environment, utilize goods for the benefits of others, and avoid oneself from various diseases as well tabżir and israf deeds.
- Every Muslim is prohibited from littering and/or disposing goods that can still be used for themselves or for others.
- 3. The government and entrepreneurs are obliged to manage waste in order to avoid harm to living things.
- 4. The government and entrepreneurs are obliged to recycle waste into goods that are useful for improving welfare of the people.

The final step of learning in this phase was to provide an explanation on the curved three-dimensional shapes. The researcher helped the students construct their understanding by asking them to pay attention to the parts that make up the plastic glass object. Then, the students were asked to discuss it with their group members and finally communicate the result to the researcher. The construction of geometry concepts with concrete building models is an important part in understanding geometry (Dewi et al., 2018), (Imswatama & Lukman, 2018) (Sutiarso et al., 2017) revealed that the investigation of the properties of geometry and concrete shape is an important part in understanding geometry. The results of their research prove that the teaching media can help students understand concepts in geometry. (Dewi et al., 2018)

found that the use of teaching aids could motivate students in participating in mathematical problem-solving. The application of teaching aids in the classroom can also improve students' mastery of geometrical concepts in mathematics learning. (Imswatama & Lukman, 2018) found that during mathematical problem-solving, students were stimulated to formulate concepts on the definitions, characteristics, and circumference of rectangles by experimenting with tools and objects around them. Moreover, (Imswatama & Lukman, 2018) concluded that this activity was effective in improving the students' mathematical skills and critical thinking. This is in line with one of the activities of the Integrated STAD and Environmental Fiqh where the students were asked to identify parts of the three-dimensional shape. This exploration activity allowed the students to think intuitively, analytically, and critically.

The next step was to help the students understand that the top and base parts of the plastic glass model was circular in different sizes. The model also had a curved side which was a truncated sector in shape instead of a rectangular. Given this information, it can be concluded that the model was actually not a tube, but a truncated cone, a cone with the tip straight cut off. Figure 3 contains the researcher's illustration of a truncated cone.

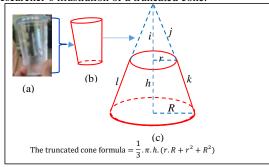


Figure 3. Truncated Cone Illustration

The researcher drew the plastic glass model (a) as shown in Figure 3 (b) on the board, then rotated the model 1800 to obtain Figure 3 (c). Then, the researcher explained to the students that if line k and line l were dragged upward (while demonstrating it), then they would intersect in one point. The researcher's activity is similar to those suggested in (Eriana et al., 2019) and (Sutiarso et al., 2017) who found that using realia could effectively improve students' concept mastery in mathematics learning.

Soon after Figure 3 (c) was completely drawn, the researcher invited the students to rediscover the truncated cone formula. The researcher provided scaffolding and guidance for the students on triangle congruence. Scaffolding is a notion that refers to an assistance provided by an adult or an expert (a teacher in this case) for the younger or the less knowledgeable ones. Scaffolding basically involves adults who control the elements of a task that are beyond students' capacity. Scaffolding allows students to concentrate on completing the elements of a task that are within their competency reach (Wood et al., 1976). Scaffolding given by the researcher could help the students discover the following the truncated cone formula: The truncated cone formula $=\frac{1}{3}.\pi.h.(r.R+r^2+R^2)$

This finding is corroborated with those of (Inkeeree et al., 2018; Ling et al., 2016). (Ling et al., 2016) revealed that in cooperative learning, students had the ability to compete and work together in groups until their individual enthusiasm and creativity in learning were boosted.

Furthermore, (Ling et al., 2016) states that cooperative learning in Mathematics leads to better outcomes because the students are put in a relaxed learning environment that encourages them to be more advanced in asking questions as a group. Similarly, (Inkeeree et al., 2018) argue that students can work as a team to develop social interaction skills that contribute to better achievement especially in learning mathematics. Scaffolding, according to (Sutiarso et al., 2017), can be provided in various ways, such as cards, handouts, instructions, examples, questions, stories, explanations, and visuals. Scaffolding is one of the teacher's strategies to bridge abstract concepts of geometry into concrete.

Phase-5

In phase 5, the researcher used a quiz to evaluate the students' environmental awareness and the understanding of geometry concepts. Each student was equipped with a plastic bottle, a plastic ruler, a piece of paper containing a mathematical problem, and a questionnaire consisting of 22 question items. The researcher asked the students to solve the problem (Figure 4) individually.

Question

"The net content or the volume of the bottle in front of you is 600 ml. Determine how to find out the volume of the bottle!"

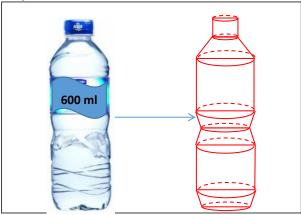


Figure 4. A 600 ml Plastic Bottle

The question aimed to explore the students' intuitive and analytical thinking. When the students were given the question, they started to investigate the bottle and pay attention to parts of the bottle. They figured out that the bottle was made up of tubes and truncated cones. Therefore, the students drew Figure 4 as an illustration to help them answer the question.

Commented [A14]: Use refrences management!

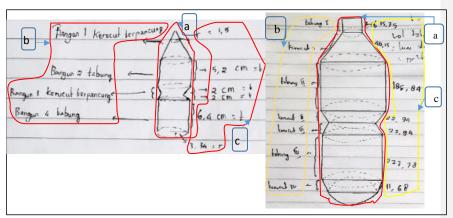


Figure 5. Student Work

An analytical thinking process was demonstrated in Figure 5. Based on the example, it was known that the student (in particular) did the following to determine the formula of the bottle volume. First, the student performed a "differentiating" activity. It was obvious that the student started by distinguishing the types of shapes that make up the bottle (Figure 5 (a) and (b)). Figure 5 (a) represents a bottle with a known volume, while Figure 5 (b) represents the types of shapes that make up the bottle. The second activity that the student did was attributing or assigning names for each shape that makes up the bottle model. As shown in Figure 5 (b), the student labeled each part by mentioning shape 1 as a truncated cone, shape 2 as a tube, shape 3 as a truncated cone, and shape 4 as a tube. Finally, the student's organizing activity was shown in the way the student's arrangement of the shape (shape 1, shape 2, shape 3, and shape 4). After organizing the order, the student measured the length of each part and wrote down their respective sizes.

Activities conducted by the student are in line with those revealed in (Abdillah, 2017; Maharani, 2014). (Maharani, 2014) states that students' analytic thinking is characterized by the ability to describe, determine, and analyze information used to understand knowledge by reasoning and thinking logically, not merely based on feelings or guesses. (Abdillah, 2017) argues that differentiating is marked by students' activity in distinguishing relevant and irrelevant parts of an object. Organizing is characterized by determining how an element fits or functions in a structure. Attributing is marked by how the students determine the point of view, bias, values, or intentions that underlie the material presented as well as identify and construct the problem. Labeling an object is usually based on previous experiences; thus, this activity is categorized into an intuitive thinking behavior (Eames, 2014; Järvilehto, 2015). Therefore, a series of activities conducted by the student may suggest that there is an interaction between the student's intuitive and analytical thinking (Abdillah et al., 2016).

According to (Vale & Barbosa, 2018), the strategy performed by the student in Figure 5 enables him to discover alternative solutions, simplify the process of problem solving, and at the same time connect knowledge with experiences and develop thinking flexibility, which constitutes one of the characteristics of analytic thinking. (Vale & Barbosa, 2018) also states that analytic thinking with visual strategies has the potential enlighten students that blind manipulation of symbols and procedures is not always possible, but necessary and

Commented [A15]: Use refrences management!

complementary for more formal and complex understanding. The result of the student's calculation of the bottle volume can be seen in Figure 6 as follows:

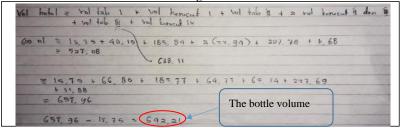


Figure 6. Calculation of the Bottle Volume

Figure 6 shows proof that the student found the bottle volume (642.21 ml) by first calculating the volume of each shape making up the bottle. The activity performed by the student is categorized into an analytical thinking behavior (Abdillah, 2017; Maharani, 2014).

After finishing the task, all of the students were asked to fill in a questionnaire on environmental awareness. The result of the survey showed that 90.48% of the students provided positive responses towards the implementation of the Integrated STAD and Environmental Figh in the classroom. Seventy percent of the students had high environmental awareness and 76% of the students agreed that a clean and healthy campus environment can be realized by the existence of official regulations from the campus. Besides, the result of the Pearson Correlation analysis showed that there was a strong and positive correlation between the learning model implementation and the students' environmental awareness (r, 0.936), also suggesting that the Integrated STAD and Environmental Fiqh could significantly affect the students' environmental awareness (Sig. value (1-tailed) or the probability is 0.000<0.05). This finding corresponds with those by (Ling et al., 2016) who discovered that Student Team Achievement Division (STAD) was effective in encouraging the teacher and the students to be innovative and creative, especially in improving the quality of learning in the classroom. In addition, (Heidari & Heidari, 2015) state that the most appropriate method and the best system for enhancing environmental knowledge in society is to provide materials, activities, and structures that help individuals perceive themselves as responsible for protecting the environment. Furthermore, according to (Heidari & Heidari, 2015), it is crucial for the teacher to acquire knowledge about environmental issues so that s/he can teach it to the students. It is also important for the teacher to constantly remind the students that environmental education can be provided in the long term or medium term as well as inform the students about their role in protecting the environment.

Activities conducted in phase 2, 3, and 4 are in line with findings from (Karataş & Karataş, 2016; Valderrama-Hernández et al., 2017) on environmental education. (Karataş & Karataş, 2016) state that environmental education has a purpose to develop a world population who are aware of, care about the environment and the problems associated with it, and have the knowledge, skills, attitudes, motivations, and commitments to work individually and collectively towards solutions to current problems and new prevention methods. Similarly, (Valderrama-Hernández et al., 2017) argue that to overcome the complexity of environmental problems, it is necessary to involve teachers in the development of environmental education.

Phase-6

In phase-6, an award was granted to the group who could show their best effort in participating. The award given to the exemplary group was in the form of references. This activity is confirmed by the results of the research by (Rahayu et al., 2017; Sari, 2017), stating that appreciation for students will result in improving their motivation in learning because they feel respected when bringing out ideas in their minds. As a result, the students feel that individual efforts and teamwork highly contribute to the success of the group.

CONCLUSION

The results of the current study showed that the students' intuitive thinking started to develop in phase 3, where they were asked to identify the type of the plastic glass they were holding. Phase 4 that allowed the students to separate parts constructing the glass, determine the name of each part, and set a point of view or the purpose underlying the material presented was the phase where the students performed an analytical thinking process. In phase 5, the students were given the opportunity to solve a mathematical problem using analytical thinking. At this stage, the students were able to distinguish the type of each shape constructing a plastic bottle (differentiating), assigning each type with a name (attributing), and labeling the names in order and calculating the length of each part (organizing). These activities were then followed by the interaction between the students' intuitive and analytical thinking that was shown in identifications and labeling of each type of the three-dimensional shapes. Furthermore, the students' analytical thinking was also shown in the process of calculating the bottle volume by first identifying each shape constructing the bottle. In addition, the result of the questionnaire on environmental awareness showed that 90.48% students provided positive responses towards the implementation of the Integrated STAD and Environmental Fiqh learning model. More than 70% of the students showed a "strongly agree" or "agree" attitude and over 76% students assumed that a clean and healthy campus environment can be realized with the support of the campus through official regulations.

REFERENCES

Abdillah, A. (2017). Berpikir Intuitif dan Analitik Siswa dalam Menyelesaikan Masalah Matematis "Informasi Terbatas". Dissertation. Malang: Universitas Negeri Malang.

Abdillah, A., Nusantara, T., Subanji, S., Susanto, H., & Abadyo, A. (2016). The Students Decision Making in Solving Discount Problem. International Education Studies, 9(7), 57–63. https://doi.org/10.5539/ies.v9n7p57

Ardiyani, S. M., Gunarhadi, G., & Riyadi, R. (2018). Realistic Mathematics Education in Cooperative Learning Viewed From Learning Activity. Journal on Mathematics Education, 9(2), 301–310. https://doi.org/10.22342/jme.9.2.5392.301-310

Creswell, J. W. (2013). Research Design Pendekatan Kualitatif, Kuantitatif, dan Mixed. Pustaka Pelajar.

Dewi, M. L., Hakim, A. R., Setiawan, A., Adhisuwignjo, S., & Rohadi, E. (2018). Mathematics teaching Aids to improve the students abstraction on Geometry in Civil Engineering of State Polytechnic Malang. IOP

Commented [A16]: Note that there are some journals that do not have pages, volumes, numbers.

Conference Series: Materials Science and Engineering, 434, 1–5. https://doi.org/10.1088/1757-899X/434/1/012004

Eames, C. L. (2014). Investigating Children's Intuitive And Analytical Thinking About Path Length As A Developmental Phenomenon [PhD, Illinois State University]. https://doi.org/10.30707/ETD2014.Eames.C

Eriana, E., Kartono, K., & Sugianto, S. (2019). Understanding Ability of Mathematical Concepts and Students' Self-reliance towards Learning by Implementing Manipulative Props (APM) on Jigsaw Technique. Journal of Primary Education, 8(2), 176–183. https://doi.org/10.15294/jpe.v8i2.25984

Firdaus, F., Kailani, I., Bakar, Md. N. B., & Bakry, B. (2015). Developing Critical Thinking Skills of Students in Mathematics Learning. Journal of Education and Learning (EduLearn), 9(3), 226–236. https://doi.org/10.11591/edulearn.v9i3.1830

Heidari, F., & Heidari, M. (2015). Effectiveness of Management of Environmental Education on Improving Knowledge for Environmental Protection (Case Study: Teachers at Tehran's Elementary School). International Journal of Environmental Research, 9(4), 1225–1232. https://doi.org/10.22059/IJER.2015.1013

Imswatama, A., & Lukman, H. S. (2018). The Effectiveness of Mathematics Teaching Material Based on Ethnomathematics. International Journal of Trends in Mathematics Education Research, 1(1), 35–38. https://doi.org/10.33122/ijtmer.v1i1.11

Inkeeree, H. K., Fauzee, M. S., & Othman, M. K. (2018). The Effects Of Student Achievement Team-Division (STAD) on Achievement and Retention in Mathematics of Thai Students. European Journal of Education Studies, 5(2), 33–47. https://doi.org/10.5281/zenodo.1413658

Järvilehto, L. (2015). The Nature and Function of Intuitive Thought and Decision Making. Springer International Publishing. https://doi.org/10.1007/978-3-319-18176-9

Karataş, A., & Karataş, E. (2016). Environmental education as a solution tool for the prevention of water pollution. Journal of Survey in Fisheries Sciences, 3(1), 61–70. https://doi.org/10.18331/SFS2016.3.1.6

Kurniawati, L., Kusumah, Y. S., Sumarmo, U., & Sabandar, J. (2014). Enhancing Students' Mathematical Intuitive-Reflective Thinking Ability through Problem-Based Learning with Hypnoteaching Method. Journal of Education and Practice, 5(36), 130–135. https://www.iiste.org/Journals/index.php/JEP/article/view/17480/17739

Ling, W. N., Ghazali, M. I. B., & Raman, A. (2016). The effectiveness of student teams-achievement division (STAD) cooperative learning on mathematics achievement among school students in Sarikei District, Sarawak. International Journal of Advanced Research and Development, 1(3), 17–21. https://doi.org/doi.org/10.22271/advanced

Maharani, H. R. (2014). Creative Thinking in Mathematics: Are We Able to Solve Mathematical Problems in a Variety of Way? International Conference on Mathematics, Science, and Education 2014 (ICMSE 2014), Semarang(Mathematics and Natural Science Semarang State University), 120–125. http://research.unissula.ac.id/file/publikasi/211313016/402521.pdf

Malewska, K. (2018). The profile of an intuitive decision maker and the use of intuition in decision-making practice. Management, 22(1), 31–44. https://doi.org/10.2478/manment-2018-0003

Nurhanurawati, Purwanto, As'ari, A. R., & Irawan, E. B. (2018). Tortuous thinking intuitively in solving problem of sequence convergence. Journal of Physics: Conference Series, 1028(2), 1–6. https://doi.org/10.1088/1742-6596/1028/1/012148

Okoli, J., & Watt, J. (2018). Crisis decision-making: The overlap between intuitive and analytical strategies. Management Decision, 56(5), 1122–1134. https://doi.org/10.1108/MD-04-2017-0333

Panbanlame, K., Sangaroon, K., & Inprasitha, M. (2014). Students' Intuition in Mathematics Class Using Lesson Study and Open Approach. Psychology, 05(13), 1503–1516. https://doi.org/10.4236/psych.2014.513161

Pavani, P., & Rajeswari, T. R. (2014). Impact of Plastics on Environmental Pollution. Journal of Chemical and Pharmaceutical Sciences, 3, 87–93.

https://jchps.com/specialissues/Special%20issue3/18%20jchps%20si3%20P.Pavani%2087-93.pdf

Purwanti, D., & Musadat, A. A. (2018). Increasing Students' Achievement on Simple Two-Dimensional Figure Materials Through Students STAD for Third Graders of Elementary School. International Journal of Multicultural and Multireligious Understanding, 5(5), 80–86. https://ijmmu.com/index.php/ijmmu/article/view/315/240

Rahayu, T., Syafril, S., Wati, W., & Yuberti, Y. (2017). The Application of STAD- Cooperative Learning in Developing Integrated Science on Students Worksheet. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 6(2), 247–254. https://doi.org/10.24042/jipfalbiruni.v6i2.1933

Sari, I. F. (2017). Pemberian Reward dan Punishment dengan Kombinasi Model Pembelajaran Kooperatif Tipe STAD untuk Meningkatkan Motivasi dan Hasil Belajar Peserta Didik Kelas X pada Mata Pelajaran Ekonomi di SMA Negeri 1 Mlati. Jurnal Pendidikan dan Ekonomi, 6(1), 1–8.

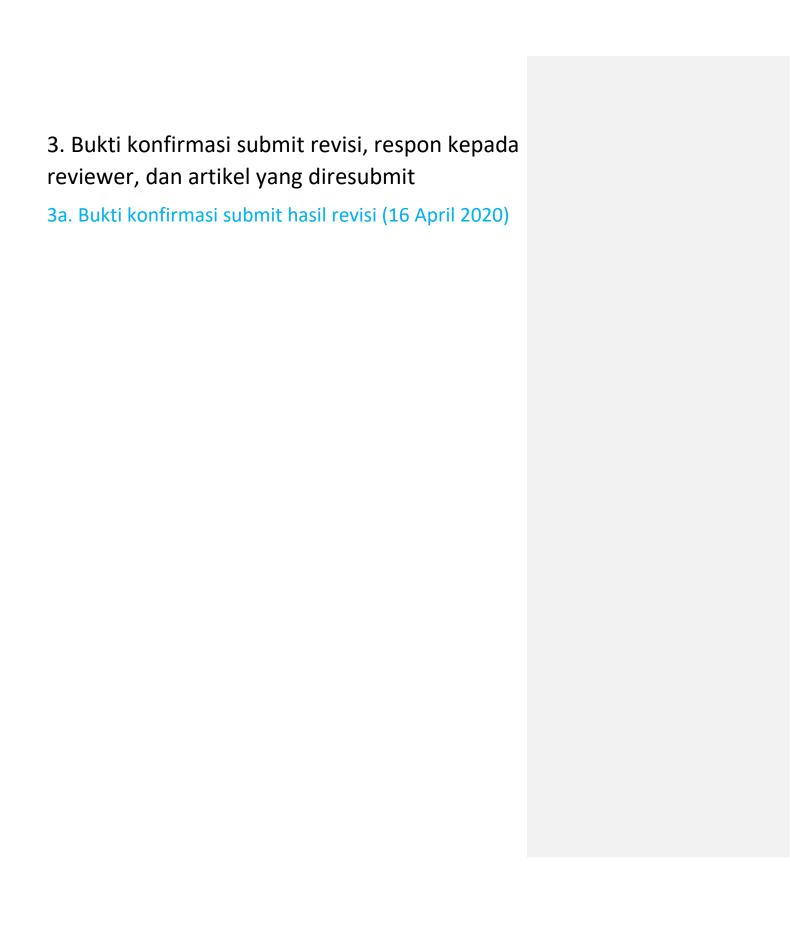
http://journal.student.uny.ac.id/ojs/ojs/index.php/ekonomi/article/viewFile/6078/5805

Sugiyono, S. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. CV. Alfabeta.

Sulaeman, D., Arif, S., & Sudarmadji. (2018). Trash-polluted irrigation: Characteristics and impact on agriculture. IOP Conference Series: Earth and Environmental Science, 148, 1–12. https://doi.org/10.1088/1755-1315/148/1/012028

Sutiarso, S., Coesamin, C., & Nurhanurawati, N. (2017). The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts. Journal on Mathematics Education, 9(1), 95–102. https://doi.org/10.22342/jme.9.1.4291.95-102

Syarifudin, S. (2013). Pencemaran Lingkungan dalam Perspektif Fiqh. Hukum Islam, XIII(1), 40–63. http://ejournal.uin-suska.ac.id/index.php/hukumislam/article/view/965/906


Valderrama-Hernández, R., Alcántara, L., & Limón, D. (2017). The Complexity of Environmental Education: Teaching Ideas and Strategies from Teachers. Procedia - Social and Behavioral Sciences, 237, 968–974. https://doi.org/10.1016/j.sbspro.2017.02.137

Vale, I., & Barbosa, A. (2018). Mathematical problems: The advantages of visual strategies. Journal of the European Teacher Education Network, 13, 23–33. https://pdfs.semanticscholar.org/d24d/568bb13ed135d041a689eff374c7e1633185.pdf

Wood, D., Bruner, J. S., & Ross, G. (1976). The Role of Tutoring in Problem Solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Commented [A17]: Middle notes should use Mendeley, Zotero etc. Do not manually.

HOME ABOUT USER HOME SEARCH CURRENT ARCHIVES ANNOUNCEMENTS Home > User > Author > Submissions > #6120 > Review

IN COLLABORATION

Manuscript Template

You are logged in as... abdillah

► My Journals ► My Profile

► Log Out

NOTIFICATIONS

▶ View ► Manage

FONT SIZE

#6120 Review

Submission

Abdillah Abdillah, Ajeng Gelora Mastuti, Muhammad Rijal, Muhajir Abd. Rahman Students' Intuitive and Analytical Thinking in the Mathematics Study through the Integration of STAD and Environmental Islamic Jurisprudence (Fiqh) Authors

Title Section

Editor Dian Anggraini 🕮

Peer Review

Round 1

Review Version Initiated 6120-18606-2-RV.DOCX 2020-03-28 2020-03-28

Last modified Uploaded file 2020-04-05
Reviewer B 6120-18778-1-RV.DOCX 2020-04-04
Reviewer A 6120-18798-1-RV.DOCX 2020-04-05

Editor Decision

Decision Notify Editor Accept Submission 2020-04-24

© EditorAuthor Email Record

2020-04-24

6120-18689:-EPLDOCX 2020-04-16

5120-19991-1-ED.DOCX 2020-04-16

5120-19991-2-ED.DOCX 2020-04-16

5120-19991-2-ED.DOCX 2020-04-16

5120-19991-2-ED.DOCX 2020-04-16

Bukti submit hasil revisi

Author Version

Upload Author Version

Choose File No file chosen Upload

3b. Respon kepada reviewer, dan artikel yang	
diresubmit	

Students' Intuitive and Analytical Thinking in of Study Math Education in The Integration of STAD and Environmental Islamic Jurisprudence (Figh)

Commented [R11]: This section has been corrected based on suggestions from the editors

Abstract

The success of a learning process depends on the teacher's mastery of materials, strategies, and media. Teachers need to possess high creativity to maintain their students' interest and motivation in learning. The integration of effective learning models and appropriate media, such as using plastic waste as realia, can be one of the alternatives to improve the quality of learning. This study also aimed to examine students' awareness of environmental issues. The quantitative and qualitative data of the study were collected simultaneously to answer the research problems. Interviews were conducted during the implementation of the learning process and quizzes. A preexperimental one-shot case study design was employed to gather the quantitative data which were then analyzed descriptively. The results of the current study showed that the students' intuitive thinking started to develop in phase 3, where they were asked to identify the type of the plastic glass they were holding. Phase 4 that allowed the students to separate parts constructing the glass, determine the name of each part, and set a point of view or the purpose underlying the material presented was the phase where the students performed an analytical thinking process. In phase 5, the students were given the opportunity to solve a mathematical problem using analytical thinking. The interaction between students' intuitive and analytical thinking shown in the identification and labeling of each type of three-dimensional form will be discussed in this article.

Keywords: Intuitive, analytical thinking, cooperative STAD, environmental awareness;

INTRODUCTION

Plastic waste is a major cause of environmental pollution. Around 52.2% irrigation is predominantly polluted by plastic waste (Sulaeman, Arif, & Sudarmadji, 2018). Plastic waste is carcinogenic to humans. It can lead to birth defects, immune disorders, endocrine disorders, and reproductive disorders (Pavani & Rajeswari, 2014). In dealing with plastic waste problems, the current study attempted to explain the use of plastic waste as a learning medium to help students understand the concept of three-dimensional shapes with curves. Besides that, the importance of understanding environmental fiqh for students to realize environmental sustainability is also very necessary (Jamaluddin, 2018; Muhtadi, Utama, Arifin, & Mawardi, 2019; Noor, 2018; Zuhdi, 2015). So, this article also outlines the potential role of university students as the members of an intellectual community who can be involved in plastic waste management. In relation to this, the understanding of plastic waste management needs to be integrated into mathematics learning at the university.

The integration of Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the Environment has been implemented in "School Mathematics Development" courses (Ardiyani, Gunarhadi, & Riyadi, 2018; Purwanti & Musadat, 2018). However, the results of these studies failed to clarify how mathematics concepts were acquired by the students at every stage of STAD. Besides, no study has reported university students' intuitive and analytic thinking through STAD and Environmental Fiqh. Therefore, the current study aimed to investigate how university students performed intuitive and analytical thinking through the integration of Student Team Achievement

Commented [A2]: This section has been improved based on advice from reviewers

Commented [A3]: style APA (the sixth edition), has been used as a reference in the citation, references, and writing format in this article

Division (STAD) and Islamic Jurisprudence (Fiqh) of the Environment as well as examine how plastic waste was utilized as a learning medium in the process.

Research has shown the importance of intuitive and analytical thinking in problem-solving (Kurniawati, Kusumah, Sumarmo, & Sabandar, 2014; Nurhanurawati, Purwanto, As'ari, & Irawan, 2018; Okoli & Watt, 2018; Panbanlame, Sangaroon, & Inprasitha, 2014). (Kurniawati et al., 2014) argue that intuitive thinking is necessary for students in solving mathematical problems, especially in predicting the correct answers to the problems and exploring the problems by identifying mathematical concepts or formulas involved in them, using various strategies, or giving various examples of statements on certain mathematical concepts. (Nurhanurawati et al., 2018) state that there might be some accuracy issues raised when studying the convergence of sequences in Real Analysis. To reduce the problems, students must be given the opportunity to use their intuitive thinking as a decisive part in acquiring new knowledge. In other words, student intuition is highly required in the first step to solving a problem (Panbanlame et al., 2014).

METHOD

Concurrent mixed methods design was employed in this study. A mixed methods design is a procedure for collecting and analyzing data by bringing together quantitative and qualitative methods in a series of analyses to understand the research problems. In concurrent studies, especially, quantitative and qualitative data are collected simultaneously and combined to answer the research problems (Creswell, 2013). The aim of the current concurrent study was to explore university students' intuitive and analytical thinking through the implementation of the integrated Student Team Achievement Division (STAD) and Environmental Islamic Jurisprudence (Fiqh) learning model. This study also aimed to describe the students' environmental awareness during the implementation of the learning model. The total participants of this study were 124 students. They consisted of four classes of four-semester students from the Department of Mathematics Education of IAIN Ambon and UIN Alauddin Makassar.

The quantitative data of this study were obtained by conducting a pre-experimental study with one-shot case study design without control classes (Sugiyono, 2013). These data were analyzed using a quantitative descriptive analysis. The participants were given a special treatment in the form of learning using the integration of STAD and environmental Fiqh for a month. Concurrently, qualitative observations and interviews were conducted to investigate major phenomena occurring during the learning process. The students' intuitive and analytical thinking were explored at every stage of learning using the integration of STAD and environmental Fiqh, meanwhile the quantitative data of the study, in the form of students' environmental awareness, were collected at the fifth phase (evaluation phase) of learning using a questionnaire.

FINDINGS AND DISCUSSION

The findings of this study depict the results of the development and implementation of a learning model, namely Integrated Student Team Achievement Division (STAD) and Islamic Jurisprudence (Fiqh) of the environment. The syntax of the learning model can be seen in Table 1.

Tabel 1. The Syntax of the Integrated STAD and Environmental Figh Learning Model

Phase	Activity

Commented [A4]: These paragraphs have been improved based on advice from reviewers

Commented [A5]: This section is maintained because there are already detailed explanations in phase 5 pages 7 and 9.

Phase-	·T
Group Arran	gement

The lecturer/researcher helps the students form a study group and assists each of the groups in transitioning efficiently.

Phase-2 Delivery of the learning objectives and motivational speech

The lecturer/researcher delivers the objectives of learning using the Integrated STAD and Environmental Figh model, invites the students to go outside the classroom to collect plastic waste, and motivates them to study.

Phase-3 Presentation of information

The lecturer/researcher presents information by using a used plastic glass as realia.

Phase-4 Group work or group study assistance

The lecturer/researcher provides guidance for the study groups to

complete their task.

Phase-5 Evaluation or assessment

The lecturer/researcher holds quizzes to evaluate the students' learning outcomes and distributes a questionnaire to examine the students' environmental awareness.

Fase-6 Award grants The lecturer/researcher gives an award to an individual or a group for their hard work during the learning process.

Phase-1

In phase 1, the students were organized into heterogeneous study groups based on their ability levels. Group arrangement is a part of the STAD learning syntax that particularly aims to develop students' cooperative skills.

Phase-2

In phase-2, the researcher delivered the objectives of learning using the Integrated STAD and Environmental Figh learning model. The researcher invited all the students to work together with the lecturer and observer outside the classroom for ten minutes. Each of the students was asked to collect plastic garbage and bring it to the classroom. The most dominant type of plastic waste found by the students around the campus environment was drinking glasses made of plastic. The plastic waste found by each student was collected in a study group that was previously formed in phase 1. The researcher then encouraged the students to learn by using a plastic glass as realia. The researcher also emphasized the concept of tubes and cones and increased the students' environmental awareness through the use of plastic glass as a learning medium.

Phase-3

Data on the students' intuitive and analytical thinking in phase-3 were obtained through direct interactions between the researcher and the students in an investigative activity to understand the concept of tube and cone sections. Information was presented by asking each group to observe a plastic glass that had been collected in the previous phase. A plastic glass was raised in front of the students as an example while asking the students about the name or type of the three-dimensional shape they were holding.

The following figure contains an illustrated model of the three-dimensional shape of a used plastic glass.

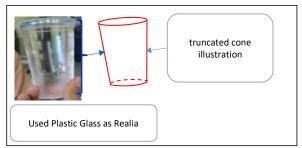


Figure 1. Used Plastic Glass as Realia and Truncated Cone Illustration

The participants from the four classes provided a relatively similar pattern for answering the researcher's question. They spontaneously said that the glass was a tube in shape. The following excerpt shows an example of the students' answer to the question:

- R: Hey Guys, Please pay attention to the plastic glass you and I hold!
- S: Yes, Sir.
- R: What shape is it?
- S: A three-dimensional shape, Sir.
- R: What kind?
- S: It is a tube, Sir (The students spontaneously answered in unison)

Each of the groups was asked to clarify their answers. The result showed that all of the students agreed that the plastic glass was a tube.

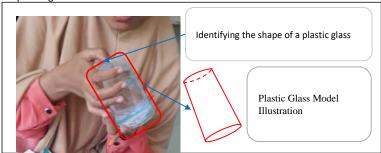


Figure 2. Student Identifying the Shape of a Plastic Glass

The students' spontaneous answer indicated their intuitive thinking. According to (Abdillah, 2017) spontaneous behaviors that are performed based on feelings are a self-evidence characteristic that can be owned without further justification or verification. The conclusion that the plastic glass was a tube was considered true by itself. The truth of the conclusion was accepted based on feelings and therefore required no further justification of verification. This finding is confirmed by (Malewska, 2018) who states that intuitive thinking occurs based on the structure of knowledge formed as a result of various types of learning. This process, according to (Malewska, 2018), takes place when an individual is able to put his/her knowledge or experiences into action.

The result of the analysis conducted to each student showed that every individual used intuitive and analytical thinking to construct their understanding of the three-dimensional model. Their intuitive thinking was signified through their spontaneity in answering the researcher's question about the name of the three-dimensional shape. The students' statement mentioning that the plastic glass

as Superior Joseph Paddillon Metandillon Joseph 2016-15072

Al-Jabar: Jurnal Pendidikan Matematika Vol. x, No. x, 20xx, Hal x - x

was a tube was based on their previous experiences or knowledge that the model resembled a tube. Furthermore, the evidence of the students' analytical thinking was found in the way the students distinguished parts that make up the model, determined how these parts fit or function within the structure, and determined points of view or purposes underlying how these shapes are built.

The following section contains a review of the data and a discussion of the students' response patterns during individual investigations. The investigation began with the researcher asking the student about the name or type of three-dimensional shape of the model held by the researcher. The student could quickly answer that "it is a tube" because s/he has had a previous experience where a similar model was claimed as a tube. According to (Abdillah, Nusantara, Subanji, Susanto, & Abadyo, 2016), using intuitive thinking to solve problems is an alternative to decision making.

Furthermore, the student's analytical thinking was shown in his/her behavior in breaking down and examining each part of the plastic glass model, especially the circular top and bottom part of the glass. The student was able to identify the model's base and circular shaped lid, but got a bit confused because the sizes of the base and lid of the model s/he held were different from those demonstrated by the researcher. In line with this, (Firdaus, Kailani, Bakar, & Bakry, 2015) point out that analytical thinking involves activities to test, question, connect, and evaluate all aspects of a situation or problem. In addition, (Abdillah et al., 2016) state that an analytical thinking process begins with identifying a problem, then breaking it into parts that are going to be analyzed and connected to make a decision. Figure 2 shows the activity of a student when identifying a plastic glass.

Figure 2 demonstrates the effort of a student in identifying elements that construct a plastic glass. The student paid careful attention to the base, top part, and curved surface of the model, but looked confused since the area of the base was different from the area of the top part of the model. Her confusion was shown in the following excerpt.

S: What is this shape..., it looks like a tube, but... this is different (while pointing at the base) from this (while pointing at the top part of the model).

Besides mentioning that the model was a tube, the student also stated that the model resembled a cylinder. She got confused because according to her, cylinder was another term for tube. At last, she expressed her uncertainty in the type of the plastic glass used for learning using the Integrated STAD and Environmental Figh.

Phase-4

In phase-4, the researcher explained the concept of a plastic-made three-dimensional shape and its relation to the Islamic view of environmental issues. The researcher began with an explanation that plastic waste that had been collected from the campus environment can be used as a learning medium. Then, the researcher described the Islamic perspective on waste issues. The researcher emphasized the fact that plastic waste that is scattered around the classroom floor and campus environment is very uncomfortable to look at. Therefore, it can be utilized as a learning medium. After that, the researcher read Al-Qur'an surah Ar-Rum:41 (Al-Qur'an, 2015) and explained the purpose of the verse and reminded the students that trash or used goods can be used as learning media or teaching aids.

The researcher also revealed the words of Prophet Muhammad Saw. that were associated with environmental issues. These words were narrated by (At-Tirmidzi, 2015), as follows: "For Allah is good and likes the good, Allah is clean and loves cleanliness, Allah is the Giver and loves giving, Allah is the Most Gracious and loves generosity. Thus, clean your yard and your terrace. Don't imitate the Jews". Furthermore, the researcher emphasized his point by quoting (Majelis Ulama Indonesia, 2014) on waste management to prevent environmental damage. The Fatwa states that:

1. Every Muslim is obliged to maintain the cleanliness of the environment, utilize goods for the benefits of others, and avoid oneself from various diseases as well tabżir and israf deeds.

- 2. Every Muslim is prohibited from littering and/or disposing goods that can still be used for themselves or for others.
- The government and entrepreneurs are obliged to manage waste in order to avoid harm to living things.
- 4. The government and entrepreneurs are obliged to recycle waste into goods that are useful for improving welfare of the people.

The final step of learning in this phase was to provide an explanation on the curved threedimensional shapes. The researcher helped the students construct their understanding by asking them to pay attention to the parts that make up the plastic glass object. Then, the students were asked to discuss it with their group members and finally communicate the result to the researcher. The construction of geometry concepts with concrete building models is an important part in understanding geometry (Dewi, Hakim, Setiawan, Adhisuwignjo, & Rohadi, 2018), (Imswatama & Lukman, 2018) (Sutiarso, Coesamin, & Nurhanurawati, 2017) revealed that the investigation of the properties of geometry and concrete shape is an important part in understanding geometry. The results of their research prove that the teaching media can help students understand concepts in geometry. (Dewi et al., 2018) found that the use of teaching aids could motivate students in participating in mathematical problem-solving. The application of teaching aids in the classroom can also improve students' mastery of geometrical concepts in mathematics learning. (Imswatama & Lukman, 2018) found that during mathematical problem-solving, students were stimulated to formulate concepts on the definitions, characteristics, and circumference of rectangles by experimenting with tools and objects around them. Moreover, (Imswatama & Lukman, 2018) concluded that this activity was effective in improving the students' mathematical skills and critical thinking. This is in line with one of the activities of the Integrated STAD and Environmental Figh where the students were asked to identify parts of the three-dimensional shape. This exploration activity allowed the students to think intuitively, analytically, and critically.

The next step was to help the students understand that the top and base parts of the plastic glass model was circular in different sizes. The model also had a curved side which was a truncated sector in shape instead of a rectangular. Given this information, it can be concluded that the model was actually not a tube, but a truncated cone, a cone with the tip straight cut off. Figure 3 contains the researcher's illustration of a truncated cone.

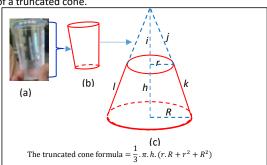


Figure 3. Truncated Cone Illustration

The researcher drew the plastic glass model (a) as shown in Figure 3 (b) on the board, then rotated the model 180° to obtain Figure 3 (c). Then, the researcher explained to the students that if line k and line I were dragged upward (while demonstrating it), then they would intersect in one point. The researcher's activity is similar to those suggested in (Eriana, Kartono, & Sugianto, 2019) and

(Sutiarso et al., 2017) who found that using realia could effectively improve students' concept mastery in mathematics learning.

Soon after Figure 3 (c) was completely drawn, the researcher invited the students to rediscover the truncated cone formula. The researcher provided scaffolding and guidance for the students on triangle congruence. Scaffolding is a notion that refers to an assistance provided by an adult or an expert (a teacher in this case) for the younger or the less knowledgeable ones. Scaffolding basically involves adults who control the elements of a task that are beyond students' capacity. Scaffolding allows students to concentrate on completing the elements of a task that are within their competency reach (Wood, Bruner, & Ross, 1976). Scaffolding given by the researcher could help the students discover the following the truncated cone formula:

The truncated cone formula $=\frac{1}{3}.\pi.h.(r.R+r^2+R^2)$

This finding is corroborated with those of (Inkeeree, Fauzee, & Othman, 2018; Ling, Ghazali, & Raman, 2016). (Ling et al., 2016) revealed that in cooperative learning, students had the ability to compete and work together in groups until their individual enthusiasm and creativity in learning were boosted. Furthermore, (Ling et al., 2016) states that cooperative learning in Mathematics leads to better outcomes because the students are put in a relaxed learning environment that encourages them to be more advanced in asking questions as a group. Similarly, (Inkeeree et al., 2018) argue that students can work as a team to develop social interaction skills that contribute to better achievement especially in learning mathematics. Scaffolding, according to (Sutiarso et al., 2017), can be provided in various ways, such as cards, handouts, instructions, examples, questions, stories, explanations, and visuals. Scaffolding is one of the teacher's strategies to bridge abstract concepts of geometry into concrete.

Phase-5

In phase 5, the researcher used a quiz to evaluate the students' environmental awareness and the understanding of geometry concepts. Each student was equipped with a plastic bottle, a plastic ruler, a piece of paper containing a mathematical problem, and a questionnaire consisting of 22 question items. The researcher asked the students to solve the problem (Figure 4) individually.

Question

"The net content or the volume of the bottle in front of you is 600 ml. Determine how to find out the volume of the bottle!"

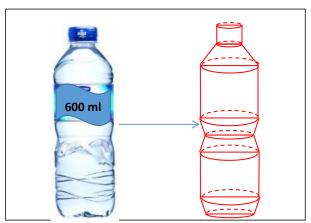


Figure 4. A 600 ml Plastic Bottle

The question aimed to explore the students' intuitive and analytical thinking. When the students were given the question, they started to investigate the bottle and pay attention to parts of the bottle. They figured out that the bottle was made up of tubes and truncated cones. Therefore, the students drew Figure 4 as an illustration to help them answer the question.

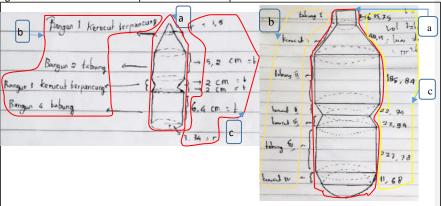


Figure 5. Student Work

An analytical thinking process was demonstrated in Figure 5. Based on the example, it was known that the student (in particular) did the following to determine the formula of the bottle volume. First, the student performed a "differentiating" activity. It was obvious that the student started by distinguishing the types of shapes that make up the bottle (Figure 5 (a) and (b)). Figure 5 (a) represents a bottle with a known volume, while Figure 5 (b) represents the types of shapes that make up the bottle. The second activity that the student did was attributing or assigning names for each shape that makes up the bottle model. As shown in Figure 5 (b), the student labeled each part by mentioning shape 1 as a truncated cone, shape 2 as a tube, shape 3 as a truncated cone, and shape 4 as a tube. Finally, the student's organizing activity was shown in the way the student's arrangement of the shape

(shape 1, shape 2, shape 3, and shape 4). After organizing the order, the student measured the length of each part and wrote down their respective sizes.

Activities conducted by the student are in line with those revealed in (Abdillah, 2017; Maharani, 2014). (Maharani, 2014) states that students' analytic thinking is characterized by the ability to describe, determine, and analyze information used to understand knowledge by reasoning and thinking logically, not merely based on feelings or guesses. (Abdillah, 2017) argues that differentiating is marked by students' activity in distinguishing relevant and irrelevant parts of an object. Organizing is characterized by determining how an element fits or functions in a structure. Attributing is marked by how the students determine the point of view, bias, values, or intentions that underlie the material presented as well as identify and construct the problem. Labeling an object is usually based on previous experiences; thus, this activity is categorized into an intuitive thinking behavior (Eames, 2014; Järvilehto, 2015). Therefore, a series of activities conducted by the student may suggest that there is an interaction between the student's intuitive and analytical thinking (Abdillah et al., 2016).

According to (Vale & Barbosa, 2018), the strategy performed by the student in Figure 5 enables him to discover alternative solutions, simplify the process of problem solving, and at the same time connect knowledge with experiences and develop thinking flexibility, which constitutes one of the characteristics of analytic thinking. (Vale & Barbosa, 2018) also states that analytic thinking with visual strategies has the potential enlighten students that blind manipulation of symbols and procedures is not always possible, but necessary and complementary for more formal and complex understanding. The result of the student's calculation of the bottle volume can be seen in Figure 6 as follows:

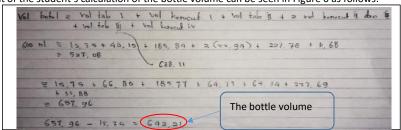


Figure 6. Calculation of the Bottle Volume

Figure 6 shows proof that the student found the bottle volume (642.21 ml) by first calculating the volume of each shape making up the bottle. The activity performed by the student is categorized into an analytical thinking behavior (Abdillah, 2017; Maharani, 2014).

After finishing the task, all of the students were asked to fill in a questionnaire on environmental awareness. The result of the survey showed that 90.48% of the students provided positive responses towards the implementation of the Integrated STAD and Environmental Fiqh in the classroom. Seventy percent of the students had high environmental awareness and 76% of the students agreed that a clean and healthy campus environment can be realized by the existence of official regulations from the campus. Besides, the result of the Pearson Correlation analysis showed that there was a strong and positive correlation between the learning model implementation and the students' environmental awareness (r, 0.936), also suggesting that the Integrated STAD and Environmental Fiqh could significantly affect the students' environmental awareness (Sig. value (1-tailed) or the probability is 0.000<0.05). This finding corresponds with those by (Ling et al., 2016) who discovered that Student Team Achievement Division (STAD) was effective in encouraging the teacher and the students to be innovative and creative, especially in improving the quality of learning in the classroom. In addition, (Heidari & Heidari, 2015) state that the most appropriate method and the best system for enhancing environmental knowledge in society is to provide materials, activities, and

structures that help individuals perceive themselves as responsible for protecting the environment. Furthermore, according to (Heidari & Heidari, 2015), it is crucial for the teacher to acquire knowledge about environmental issues so that s/he can teach it to the students. It is also important for the teacher to constantly remind the students that environmental education can be provided in the long term or medium term as well as inform the students about their role in protecting the environment.

Activities conducted in phase 2, 3, and 4 are in line with findings from (Karataş & Karataş, 2016; Valderrama-Hernández, Alcántara, & Limón, 2017) on environmental education. (Karataş & Karataş, 2016) state that environmental education has a purpose to develop a world population who are aware of, care about the environment and the problems associated with it, and have the knowledge, skills, attitudes, motivations, and commitments to work individually and collectively towards solutions to current problems and new prevention methods. Similarly, (Valderrama-Hernández et al., 2017) argue that to overcome the complexity of environmental problems, it is necessary to involve teachers in the development of environmental education.

Phase-6

In phase-6, an award was granted to the group who could show their best effort in participating. The award given to the exemplary group was in the form of references. This activity is confirmed by the results of the research by (Rahayu, Syafril, Wati, & Yuberti, 2017; Sari, 2017), stating that appreciation for students will result in improving their motivation in learning because they feel respected when bringing out ideas in their minds. As a result, the students feel that individual efforts and teamwork highly contribute to the success of the their groups.

CONCLUSION

The results of the current study showed that the students' intuitive thinking started to develop in phase 3, where they were asked to identify the type of the plastic glass they were holding. Phase 4 that allowed the students to separate parts constructing the glass, determine the name of each part, and set a point of view or the purpose underlying the material presented was the phase where the students performed an analytical thinking process. In phase 5, the students were given the opportunity to solve a mathematical problem using analytical thinking. At this stage, the students were able to distinguish the type of each shape constructing a plastic bottle (differentiating), assigning each type with a name (attributing), and labeling the names in order and calculating the length of each part (organizing). These activities were then followed by the interaction between the students' intuitive and analytical thinking that was shown in identifications and labeling of each type of the threedimensional shapes. Furthermore, the students' analytical thinking was also shown in the process of calculating the bottle volume by first identifying each shape constructing the bottle. In addition, the result of the questionnaire on environmental awareness showed that 90.48% students provided positive responses towards the implementation of the Integrated STAD and Environmental Figh learning model. More than 70% of the students showed a "strongly agree" or "agree" attitude and over 76% students assumed that a clean and healthy campus environment can be realized with the support of the campus through official regulations.

REFERENCES

Abdillah, A. (2017). Berpikir Intuitif dan Analitik Siswa dalam Menyelesaikan Masalah Matematis "Informasi Terbatas" (Dissertation). Universitas Negeri Malang, Malang.

Commented [A6]: This section has been improved based on the mark from the reviewer

assa kund Pendilkan Matematika p-ISSN 2086-5872 -ISSN 2540-7562

Al-Jabar: Jurnal Pendidikan Matematika Vol. x, No. x, 20xx, Hal x - x

Abdillah, A., Nusantara, T., Subanji, S., Susanto, H., & Abadyo, A. (2016). The Students Decision Making in Solving Discount Problem. *International Education Studies*, *9*(7), 57–63. https://doi.org/10.5539/ies.v9n7p57

Al-Qur'an. (2015). Al-Qur'an Tajwid dan Terjemah, Departemen Agama RI. Bandung: Diponegoro.

Ardiyani, S. M., Gunarhadi, G., & Riyadi, R. (2018). Realistic Mathematics Education in Cooperative Learning Viewed From Learning Activity. *Journal on Mathematics Education*, *9*(2), 301–310. https://doi.org/10.22342/jme.9.2.5392.301-310

At-Tirmidzi. (2015). Hadits Tirmidzi Nomor 2723. Retrieved April 12, 2020, from Tafsir AlQuran Online website: https://tafsirq.com/hadits/tirmidzi/2723

Creswell, J. W. (2013). Research Design Pendekatan Kualitatif, Kuantitatif, dan Mixed. Yogyakarta: Pustaka Pelajar.

Dewi, M. L., Hakim, A. R., Setiawan, A., Adhisuwignjo, S., & Rohadi, E. (2018). Mathematics teaching Aids to improve the students abstraction on Geometry in Civil Engineering of State Polytechnic Malang. *IOP Conference Series: Materials Science and Engineering*, 434, 1–5. https://doi.org/10.1088/1757-899X/434/1/012004

Eames, C. L. (2014). *Investigating Children's Intuitive And Analytical Thinking About Path Length As A Developmental Phenomenon* (PhD, Illinois State University). https://doi.org/10.30707/ETD2014.Eames.C

Eriana, E., Kartono, K., & Sugianto, S. (2019). Understanding Ability of Mathematical Concepts and Students' Self-reliance towards Learning by Implementing Manipulative Props (APM) on Jigsaw Technique. *Journal of Primary Education*, 8(2), 176–183. https://doi.org/10.15294/jpe.v8i2.25984

Firdaus, F., Kailani, I., Bakar, Md. N. B., & Bakry, B. (2015). Developing Critical Thinking Skills of Students in Mathematics Learning. *Journal of Education and Learning (EduLearn)*, *9*(3), 226–236. https://doi.org/10.11591/edulearn.v9i3.1830

Heidari, F., & Heidari, M. (2015). Effectiveness of Management of Environmental Education on Improving Knowledge for Environmental Protection (Case Study: Teachers at Tehran's Elementary School). International Journal of Environmental Research, 9(4), 1225–1232. https://doi.org/10.22059/IJER.2015.1013

Imswatama, A., & Lukman, H. S. (2018). The Effectiveness of Mathematics Teaching Material Based on Ethnomathematics. *International Journal of Trends in Mathematics Education Research*, 1(1), 35–38. https://doi.org/10.33122/ijtmer.v1i1.11

Inkeeree, H. K., Fauzee, M. S., & Othman, M. K. (2018). The Effects Of Student Achievement Team-Division (STAD) on Achievement and Retention in Mathematics of Thai Students. *European Journal of Education Studies*, 5(2), 33–47. https://doi.org/10.5281/zenodo.1413658

as politikan Metematika p-ISSN 2986-5872 e-ISSN 2986-5872

Al-Jabar: Jurnal Pendidikan Matematika Vol. x, No. x, 20xx, Hal x - x

Jamaluddin, J. (2018). Fiqh Al-Bi'ah Ramah Lingkungan; Konsep Thaharah dan Nadhafah dalam membangun Budaya Bersih. *Tribakti: Jurnal Pemikiran Keislaman*, 29(2), 324~345. https://doi.org/10.33367/tribakti.v29i2.600

Järvilehto, L. (2015). *The Nature and Function of Intuitive Thought and Decision Making*. https://doi.org/10.1007/978-3-319-18176-9

Karataş, A., & Karataş, E. (2016). Environmental education as a solution tool for the prevention of water pollution. *Journal of Survey in Fisheries Sciences*, *3*(1), 61–70. https://doi.org/10.18331/SFS2016.3.1.6

Kurniawati, L., Kusumah, Y. S., Sumarmo, U., & Sabandar, J. (2014). Enhancing Students' Mathematical Intuitive-Reflective Thinking Ability through Problem-Based Learning with Hypnoteaching Method. *Journal of Education and Practice*, *5*(36), 130–135. Retrieved from https://www.iiste.org/Journals/index.php/JEP/article/view/17480/17739

Ling, W. N., Ghazali, M. I. B., & Raman, A. (2016). The effectiveness of student teams-achievement division (STAD) cooperative learning on mathematics achievement among school students in Sarikei District, Sarawak. *International Journal of Advanced Research and Development*, 1(3), 17–21. https://doi.org/doi.org/10.22271/advanced

Maharani, H. R. (2014). Creative Thinking in Mathematics: Are We Able to Solve Mathematical Problems in a Variety of Way? *International Conference on Mathematics, Science, and Education 2014 (ICMSE 2014), Semarang* (Mathematics and Natural Science Semarang State University), 120–125. Retrieved from http://research.unissula.ac.id/file/publikasi/211313016/402521.pdf

Majelis Ulama Indonesia. (2014). Fatwa Majelis Ulama Indonesia Nomor 41 Tahun 2014 Tentang Pengelolaan Sampah Untuk Mencegah Kerusakan Lingkungan. Retrieved from http://mui.or.id/wp-content/uploads/files/fatwa/Pengelolaan-Sampah-utk-Mencegah-Kerusakan-Lingkungan.pdf

Malewska, K. (2018). The profile of an intuitive decision maker and the use of intuition in decision-making practice. *Management*, 22(1), 31–44. https://doi.org/10.2478/manment-2018-0003

Muhtadi, R., Utama, R. W. A., Arifin, N. R., & Mawardi, I. (2019). Tinjauan Maqashid Syariah dan Fiqh al-Bi'ah dalam Green Economy. *Jurnal Ekonomi Islam*, *10*(2), 242–259. Retrieved from https://journal.uhamka.ac.id/index.php/jei/article/view/3808

Noor, F. (2018). Pengelolaan Sumber Daya Alam Berdasar Prinsip Fiqh Al-Bi'ah. *Jurnal Ilmiah Pendidikan Pancasila dan Kewarganegaraan*, 3(1), 47–55. https://doi.org/10.17977/um019v3i1p47-55

Nurhanurawati, Purwanto, As'ari, A. R., & Irawan, E. B. (2018). Tortuous thinking intuitively in solving problem of sequence convergence. *Journal of Physics: Conference Series*, 1028(2), 1–6. https://doi.org/10.1088/1742-6596/1028/1/012148

Okoli, J., & Watt, J. (2018). Crisis decision-making: The overlap between intuitive and analytical strategies. *Management Decision*, *56*(5), 1122–1134. https://doi.org/10.1108/MD-04-2017-0333

Panbanlame, K., Sangaroon, K., & Inprasitha, M. (2014). Students' Intuition in Mathematics Class Using Lesson Study and Open Approach. *Psychology*, *05*(13), 1503–1516. https://doi.org/10.4236/psych.2014.513161

Pavani, P., & Rajeswari, T. R. (2014). Impact of Plastics on Environmental Pollution. *Journal of Chemical and Pharmaceutical Sciences*, (3), 87–93. Retrieved from https://jchps.com/specialissues/Special%20issue3/18%20jchps%20si3%20P.Pavani%2087-93.pdf

Purwanti, D., & Musadat, A. A. (2018). Increasing Students' Achievement on Simple Two-Dimensional Figure Materials Through Students STAD for Third Graders of Elementary School. *International Journal of Multicultural and Multireligious Understanding*, *5*(5), 80–86. Retrieved from https://ijmmu.com/index.php/ijmmu/article/view/315/240

Rahayu, T., Syafril, S., Wati, W., & Yuberti, Y. (2017). The Application of STAD- Cooperative Learning in Developing Integrated Science on Students Worksheet. *Jurnal Ilmiah Pendidikan Fisika Al-Biruni*, 6(2), 247–254. https://doi.org/10.24042/jipfalbiruni.v6i2.1933

Sari, I. F. (2017). Pemberian Reward dan Punishment dengan Kombinasi Model Pembelajaran Kooperatif Tipe STAD untuk Meningkatkan Motivasi dan Hasil Belajar Peserta Didik Kelas X pada Mata Pelajaran Ekonomi di SMA Negeri 1 Mlati. *Jurnal Pendidikan dan Ekonomi, 6*(1), 1–8. Retrieved from http://journal.student.uny.ac.id/ojs/ojs/index.php/ekonomi/article/viewFile/6078/5805

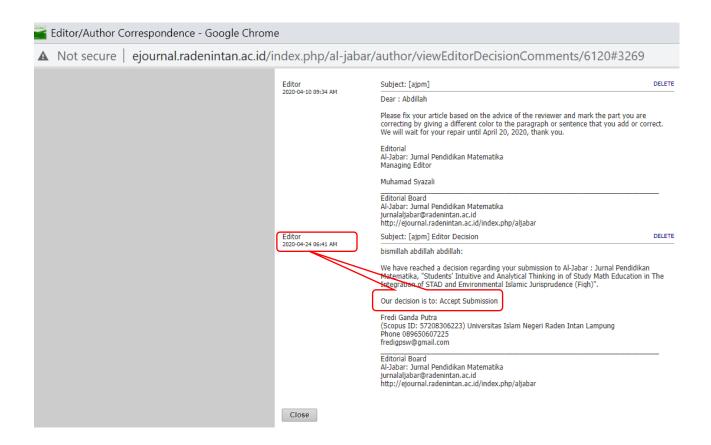
Sugiyono, S. (2013). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.

Sulaeman, D., Arif, S., & Sudarmadji. (2018). Trash-polluted irrigation: Characteristics and impact on agriculture. *IOP Conference Series: Earth and Environmental Science*, 148, 1–12. https://doi.org/10.1088/1755-1315/148/1/012028

Sutiarso, S., Coesamin, C., & Nurhanurawati, N. (2017). The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts. *Journal on Mathematics Education*, *9*(1), 95–102. https://doi.org/10.22342/jme.9.1.4291.95-102

Valderrama-Hernández, R., Alcántara, L., & Limón, D. (2017). The Complexity of Environmental Education: Teaching Ideas and Strategies from Teachers. *Procedia - Social and Behavioral Sciences*, 237, 968–974. https://doi.org/10.1016/j.sbspro.2017.02.137

Vale, I., & Barbosa, A. (2018). Mathematical problems: The advantages of visual strategies. *Journal of the European Teacher Education Network*, 13, 23–33. Retrieved from https://pdfs.semanticscholar.org/d24d/568bb13ed135d041a689eff374c7e1633185.pdf


Wood, D., Bruner, J. S., & Ross, G. (1976). The Role of Tutoring in Problem Solving. *Journal of Child Psychology and Psychiatry*, 17(2), 89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Zuhdi, M. H. (2015). Paradigma Fiqh Al-Bi'ah Berbasis Kecerdasan Naturalis: Tawaran Hukum Islam Terhadap Krisis Ekologi. *Al-'Adalah*, *12*(2), 771–784. https://doi.org/10.24042/adalah.v12i2.213

Commented [A7]: All references in citations, references, and writing formats in this article use the APA style (sixth edition)

4. Bukti konfirmasi artikel accepted (24 April 2020)

5. Bukti konfirmasi artikel published online

Eksternal

Kotak Masuk

Fredi Ganda Putra <adminojs@radenintan.ac.id>

Rab, 24 Jun 2020

14.38

kepada saya

Inggris Indonesia

Terjemahkan pesan

Nonaktifkan untuk: Inggris

Readers:

Al-Jabar: Jurnal Pendidikan Matematika has just published its latest issue at http://ejournal.radenintan.ac.id/index.php/al-jabar. We invite you to review the Table of Contents here and then visit our web site to review articles and items of interest.

Thanks for the continuing interest in our work, Fredi Ganda Putra (Scopus ID: 57208306223) Universitas Islam Negeri Raden Intan Lampung Phone 089650607225 fredigpsw@gmail.com

Al-Jabar: Jurnal Pendidikan Matematika

Vol 11, No 1 (2020): Al-Jabar: Jurnal Pendidikan Matematika

Table of Contents

http://ejournal.radenintan.ac.id/index.php/al-jabar/issue/view/456

Meta-Analysis: the Effect of Problem Approach and Inquiry Approach Toward Students' Mathematical Critical Thinking Skill Over the Past 4 Years (1 - 10)

Ida Dwijayanti, Aryo Andri Nugroho, Yogi Indah Pratiwi Web-Based Learning Media Assisted By Powtoon in Basic Mathematics Course (11 - 20)

Vera Dewi Susanti, Tri Andari, Angga Harenza The Application of the Accelerated Learning Cycle, Brain-based Learning Model, and Direct Instruction Model toward Mathematical Reasoning in Terms of Mathematical Communication (21 - 28)

Arie Purwa Kusuma, Nurina Kurniasari Rahmawati, Ramadoni Ramadoni Developing Islamic Context-Based Learning Materials in Increasing Students' Mathematical Understanding (29 - 38)

Maria Ulpah, Ifada Novikasari

Kahoot-Based Learning Game to Improve Mathematics Learning Motivation of Elementary School Students (39 - 48)

Adi Setiawan, Soeharto Soeharto

Students' Intuitive and Analytical Thinking in the Mathematics Study through the Integration of STAD and Environmental Islamic Jurisprudence (Figh) (49 - 60)

Abdillah Abdillah, Ajeng Gelora Mastuti, Muhammad Rijal, Muhajir Abd. Rahman

Improvement of Creative Thinking Ability through Problem-Based Learning with Local Culture Based on Students' Gender and Prior Mathematics Ability (61 - 72)

Rahmi Ramadhani, Fajri Farid, Fitria Lestari, Amir Machmud Students' Cognitive Barrier in Problem Solving: Picture-based Problem-solving (73 - 82)

A.Wilda Indra Nanna, Enditiyas Pratiwi

Climber Prospective Teacher: Relationship Beliefs and Mathematics Teaching Practice (83 - 92)

Muhtarom Muhtarom, Tatag Yuli Eko Siswono, Dwi Juniati Extended F-Expansion Method for Solving the modified Korteweg-de Vries (mKdV) Equation (93 - 100)

Vina Apriliani, Ikhsan Maulidi, Budi Azhari

Hypothetical learning trajectory (HLT) for proof logic topics on algebra course: What're the experts think about? (101 - 110)

Riza Agustiani, Rahmat Nursalim

Students' Creative Thinking Skill in Solving Higher Order Thinking Skills (HOTS) Problems (111 - 120)

M Zaiyar, Irfan Rusmar

Problem Based Learning with a Scientific Approach with Character in Mathematics Learning (121 - 132)

Ahmat Wakit, R. Hadapiningradja Kusumodestoni

Students' Mental Construction in Cube and Cuboid Concepts Based on Mathematical Ability Differences (133 - 144)

Imam Rofiki, Ahmad Choirul Anam, Putri Eka Sari, Wahyu Henky Irawan, Ika Santia

Relationship between Cooperative learning method and Students' Mathematics Learning Achievement: A Meta-Analysis Correlation (145 - 158)

Dafid Slamet Septiana, Muhammad Irfan Rumasoreng, Anggit Prabowo

Editorial Board

Al-Jabar: Jurnal Pendidikan Matematika

jurnalaljabar@radenintan.ac.id

http://ejournal.radenintan.ac.id/index.php/aljabar